[Fis] definitions of information by Theil (1972) derived from Shnnon (1948); back to the basics?
Roy Morrison
roy.morrison114 at yahoo.com
Mon Jan 23 17:35:39 CET 2023
I guess that's why black swan events magically and consistently lead to financial calamity when events supposedly more than two or three standard deviations from normal are considered to offer zero information.
Roy
Sent from Yahoo Mail on Android
On Mon, Jan 23, 2023 at 10:30 AM, Loet Leydesdorff<loet at leydesdorff.net> wrote: Theil (1972) pp. 1 and 2:
1.1. Information
Consider an event E with probability p; the nature of the event is irrelevant. At some point in time wereceive a reliable message stating that Ein fact occurred. The question is: How should one measure the amount ofinformation conveyed by this message?
Information
Since the question is vague, we shall try to answer it inan intuitive manner. Suppose that p isclose to 1 (e.g., p = .95). Then, onemay argue, the message conveys very little information, because it wasvirtually certain that E would takeplace. But suppose that p = .01, sothat it is almost certain E will notoccur. If E nevertheless does occur,the message stating this will be unexpected and hence contains a great deal ofinformation.
These intuitive ideassuggest that, if we want to measure the information derived from a message interms of the probability p thatprevailed before or to the arrival of the message, we should select a decreasing function. The function proposedby SHANNON (1948) is when the probability prior to the message is zero) to 0 (zero information when the probability is one).
The unit of information is determined by the base of the logarithm. Frequently 2 is used as a base, which implies that any message concerning a 50-50 event has unit information: h() = log 2 2 = 1, and information is then said to be measured in binary digits or, for short, bits. When natural logarithms are used, the information unit is a nit.
best, loet
_______________
Loet Leydesdorff
"The Evolutionary Dynamics of Discusive Knowledge"(Open Access)
Professor emeritus, University of Amsterdam
Amsterdam School of Communication Research (ASCoR)
loet at leydesdorff.net ; https://urldefense.com/v3/__http://www.leydesdorff.net/__;!!D9dNQwwGXtA!S_JW2hPwStZUUyJlCSWG4Q9ArdkBcYE0kt6e8kPZwmHISXHSVdTWbktvoTi3WwDcJyGpN5OGd6RzX5j1cQgWsQ1FoZB4$
https://urldefense.com/v3/__http://scholar.google.com/citations?user=ych9gNYAAAAJ&hl=en__;!!D9dNQwwGXtA!S_JW2hPwStZUUyJlCSWG4Q9ArdkBcYE0kt6e8kPZwmHISXHSVdTWbktvoTi3WwDcJyGpN5OGd6RzX5j1cQgWscW8AnAd$
ORCID: https://urldefense.com/v3/__http://orcid.org/0000-0002-7835-3098__;!!D9dNQwwGXtA!S_JW2hPwStZUUyJlCSWG4Q9ArdkBcYE0kt6e8kPZwmHISXHSVdTWbktvoTi3WwDcJyGpN5OGd6RzX5j1cQgWsTQmic3w$ ;
_______________________________________________
Fis mailing list
Fis at listas.unizar.es
http://listas.unizar.es/cgi-bin/mailman/listinfo/fis
----------
INFORMACIÓN SOBRE PROTECCIÓN DE DATOS DE CARÁCTER PERSONAL
Ud. recibe este correo por pertenecer a una lista de correo gestionada por la Universidad de Zaragoza.
Puede encontrar toda la información sobre como tratamos sus datos en el siguiente enlace: https://sicuz.unizar.es/informacion-sobre-proteccion-de-datos-de-caracter-personal-en-listas
Recuerde que si está suscrito a una lista voluntaria Ud. puede darse de baja desde la propia aplicación en el momento en que lo desee.
http://listas.unizar.es
----------
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://listas.unizar.es/pipermail/fis/attachments/20230123/d0aa5723/attachment-0001.html>
More information about the Fis
mailing list