[Fis] Are there 3 kinds of motions in physics and biology?

Sungchul Ji sji at pharmacy.rutgers.edu
Tue May 8 22:18:25 CEST 2018


Hi Michel,


Thank you for your informative comments and helpful suggestions in your earlier post (which I happened to have deleted by accident).  In any case I have a copy of the post so I can answer your questions raised therein.


(1)  I am defining the Planckian information, I_P, as the information required to transform a symmetric, Gaussian-like equation (GLE), into the Planckian distribution.  which is the Gaussian distribution with the pre-exponential factor replaced with a free parameter, A,   i.e., y = A*exp(-(\m - x)^2/2\s^2), which was found to overlap with PDE (Planckian Distribution Equation) in the rising phase.  So far we have two different ways of quantifying I_P: (i) the Plamck informaiton of the fist kind, i_PF = log_2 [AUC(PDE)/AUC(GLE)], where AUC is the area under the curve, and (ii) the Planckian information of the second kind, I_PS = -log_2[(\m -mode)/ \s], which applies to right-skewed long-tailed histograms only.  To make it apply also to the left-skewed long-tailed histograms, it would be necessary to replace (\m - mode) with its absolute value, i.e., |\m - mode|.


(2)  There can be more than two kinds of Planckian information, including what may be called the Planckian information of the third kind, i.e., I_PT = - long_2 (\chi), as you suggest.  (By the way, how do you define \chi ?).


(3)  The definition of Planckian information given in (1) implies that  I_P is associated with asymmetric distribution generated by distorting the symmetric Gaussian-like distribution by transforming the x coordinate non-linearly while keeping the y-coordinate of the Gaussian distribution invariant [1].




                                                                   GP                       definition
              Gaussian-like Distribution -------------> PDE --------------------> IP



Figure 1.  The definitions of the Gaussian process (GP) and the Planckian information (IP) based on PDE, Planckian Distribution Equation.  GP is the physicochemical process generating a long-tailed histogram fitting PDE.




(4)  I am assuming that the PDE-fitting asymmetric histograms will always have non-zero measures of asymetry.

(5)  I have shown in [1] that the human decision-making process is an example of the Planckian process that can be derived from a Gaussian distribution based on the drift-diffusion model well-known in the field of decision-making psychophysics.

Reference:
   [1] Ji, S. (2018).  The Cell Language theory: Connecting Mind and Matter.  World Scientific Publishing, New Jersey.   Figure 8.7, p. 357.

All the best.

Sung




________________________________
From: Fis <fis-bounces at listas.unizar.es> on behalf of Michel Petitjean <petitjean.chiral at gmail.com>
Sent: Monday, May 7, 2018 2:05 PM
To: fis
Subject: Re: [Fis] Are there 3 kinds of motions in physics and biology?

Dear Karl,
In my reply to Sung I was dealing with the asymmetry of probability
distributions.
Probability distributions are presented on the Wikipedia page:
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FProbability_distribution&data=02%7C01%7Csji%40pharmacy.rutgers.edu%7C171407db4122453fe72a08d5b4465e1f%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C636613136684543650&sdata=mMWRW6FO6hrflqQRGhXtoTkhDqt0FTspjtT9YGgNn2c%3D&reserved=0
Don't read all this page, the beginning should suffice.
Then, the skewness is explained on an other wiki page:
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSkewness&data=02%7C01%7Csji%40pharmacy.rutgers.edu%7C171407db4122453fe72a08d5b4465e1f%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C636613136684543650&sdata=HQh0OOxgyE5fXZMMEfZF6mG5S0yKOPNjoEPO%2FNo28rA%3D&reserved=0
Possibly the content of these two pages is unclear for you.
In order to avoid a huge of long and non necessary explanations, you
may tell me what you already know about probability distributions and
what was unclear from my post, then I can explain more efficiently.
However, I let Sung explain about his own post :)
Best regards,
Michel.

2018-05-07 19:55 GMT+02:00 Michel Petitjean <petitjean.chiral at gmail.com>:
> Dear Karl,
> Yes I can hear you.
> About symmetry, I shall soon send you an explaining email, privately, because I do not want to bother the FISers with long explanations (unless I am required to do it).
> However, I confess that many posts that I receive from the FIS list are very hard to read, and often I do not understand their deep content :)
> In fact, that should not be shocking: few people are able to read texts from very diverse fields (as it occurs in the FIS forum), and I am not one of them.
> Even the post of Sung was unclear for me, and it is exactly why I asked him questions, but only on the points that I may have a chance to understand (may be).
> Best regards,
> Michel.
>
_______________________________________________
Fis mailing list
Fis at listas.unizar.es
https://na01.safelinks.protection.outlook.com/?url=http%3A%2F%2Flistas.unizar.es%2Fcgi-bin%2Fmailman%2Flistinfo%2Ffis&data=02%7C01%7Csji%40pharmacy.rutgers.edu%7C171407db4122453fe72a08d5b4465e1f%7Cb92d2b234d35447093ff69aca6632ffe%7C1%7C0%7C636613136684543650&sdata=SGe1nIzwBEg%2BzgW58GSDulk015IzSdlQqTQB7XhEBcE%3D&reserved=0
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://listas.unizar.es/pipermail/fis/attachments/20180508/3f8813a5/attachment-0001.html>


More information about the Fis mailing list