<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=windows-1252">
</head>
<body>
<br>
<div class="moz-forward-container"><span lang="ES"><o:p> </o:p></span>
<div class="WordSection1">
<p><b><span lang="ES">Título: </span></b><span lang="ES">Indirect
Chiral Magnetic Exchange through
Dzyaloshinskii-Moriya–Enhanced RKKY Interactions<br>
<br>
<b>Ponente: </b> Prof. Matthias Bode (University of
Würzburg)<br>
<br>
<b>Lugar: </b>Sala de Grados de la Facultad de Ciencias<b>
<br>
<br>
Fecha y hora: </b>martes 11 de febrero a las 12:30 <br>
<br>
<b>Resumen de la charla:</b> </span><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:windowtext;mso-fareast-language:EN-US"
lang="ES">Localized electron spins can couple magnetically
via the Ruderman-Kittel-Kasuya-Yosida interaction even if
their wave functions lack direct overlap. </span><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:windowtext;mso-fareast-language:EN-US">Theory
predicts that spin-orbit scattering leads to a
Dzyaloshinskii-Moriya type enhancement of this indirect
exchange interaction, giving rise to chiral exchange terms.
Recently, we performed a spin-polarized scanning tunneling
microscopy study of transition metal oxide chains on the
(001) surfaces of Ir and Pt. Our STM results confirm that
the deposition of Co, Fe, Mn, and Cr on the (2×1)
oxygen-reconstructed Ir(001) surface leads to the formation
of quasi-one-dimensional chains with a (3×1) unit cell. In
contrast, preparation on Pt(001) required deposition onto
the cold substrate with subsequent annealing in an oxygen
atmosphere. In particular, for MnO<sub>2</sub> chains we
observed highly complex spin structures. Whereas we find an
almost antiferromagnetic Mn–Mn coupling along the chains,
the inter-chain coupling across the non-magnetic substrates
turns out to be chiral. These magnetic structures observed
for MnO<sub>2</sub> can be viewed as highly anisotropic
Skyrmions.</span><o:p></o:p></p>
<p class="MsoNormal"><br>
<br>
<b>Resumen CV: </b><i>Prof. Matthias Bode holds the Chair of
Experimental Physics II department at the University of
Würzburg since 2010. After getting his PhD in Physics, he
led between 1997 and 2006 the ‘Nanomagnetism’ research
sub-group in the University of Hamburg, where he contributed
decisively to the development of spin resolved imaging
techniques with atomic resolution. His studies paved the way
to understand exotic magnetic ground states in low
dimensional systems. He has recieved the Philip-Morris
Research Award and is Distinguished Lecturer of the IEEE
Magnetic Society. His current research interests are
topological, magnetic and transport properties of surfaces
investigated by Scanning Tunnelling Microscopy. </i><o:p></o:p></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-GB"
lang="ES"><o:p> </o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-GB"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="mso-fareast-language:EN-GB"><img
id="Imagen_x0020_1"
src="cid:part1.D557A4AB.36711FC6@unizar.es"
alt="Departamento de Física de la Materia Condesada"
class="" width="550" height="160"><o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:12.0pt;font-family:"Adobe Garamond
Pro",serif;mso-fareast-language:EN-GB"><o:p> </o:p></span></p>
<p class="MsoNormal"><span
style="font-size:12.0pt;font-family:"Adobe Garamond
Pro",serif;mso-fareast-language:EN-GB" lang="ES">Facultad
de Ciencias, C/ Pedro Cerbuna 12, 50009 Zaragoza (SPAIN)<o:p></o:p></span></p>
<p class="MsoNormal"><span
style="font-size:12.0pt;font-family:"Adobe Garamond
Pro",serif;mso-fareast-language:EN-GB">Web: <a
href="https://fmc.unizar.es/" moz-do-not-send="true">https://fmc.unizar.es/</a><o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</div>
</body>
</html>