<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div class="moz-cite-prefix"><i>(This message has general interest,
        and eliminating its attached docs it fits well into the list.
        Interested parties in these attachments may ask Lou
        directly--Pedro)</i></div>
    <div class="moz-cite-prefix"><br>
    </div>
    <div class="moz-cite-prefix">El 13/02/2024 a las 9:05, Louis
      Kauffman escribió:<br>
    </div>
    <p>Dear Folks,</p>
    <p>This message was too long to reach fis. I cannot reduce it and
      keep the content. So I am sending it for a private discussion.</p>
    <p>I am interested in your notion Stu of jury rigging. You are
      interested in structures that have a global interrelationship and
      are not very likely to be deduced from some axioms although they
      may indeed occur in processes constrained by some axioms.  I am
      interested in structures that can occur under such constraints.
      This is what mathematics is often about for me. For example we
      have the Borommean Rings in topology (And of course a long history
      from the Borommean family to Ballentine been ads). Yellow
      surrounds Blue surrounds Red surrounds Yellow...</p>
    <p>Below I show you an example of generalized Borommean rings. They
      are a kind of topological autocatalytic structure. Remove any ring
      and the whole thing comes undone, but together they are
      topologically linked. Now we topologists do not deduce these
      things. We invent them or discover them. And if you were to look
      around you could make more of them.Once we know about them we can
      talk learnedly about the SET OF ALL BOROMMEAN TYPE RINGS.  It can
      be a pastime to to try to find things like this. And then we enter
      a host of mathematical problems such as — how do you prove from
      topological axioms that these rings are indeed linked? That is
      something that can be deduced if you are clever enough. So we go
      back and forth between invention/discovery and deductive
      challenges. The prolixity of topological jury rigging is huge and
      I imagine that <br>
    </p>
    <p>If you wonder how we might make proofs about such linkedness,
      this paper will give you an introduction. High school students can
      understand the techniques and in fact I wrote this paper with
      Devika and Claudia when they were inhigh school in Chicago. But
      lets go over to biology and in particular to recombination and
      knotting, this kind of topology suitably generalized will be
      important in biology in the future.</p>
    <p>DNA molecules can be knotted and this was proved by the molecular
      biologists Cozzarelli, Spengler and Stasiak by coating DNA with
      protein and using electron microscopy. This allowed one to SEE the
      weaving and to map the DNA via electron microscopy to the
      diagrammatic formal systems of the knot theory. You can draw a
      knot diagram corresponding to the self-entangled DNA. Then it is
      possible to use topological analysis consisting as I said of
      invention/discovery coupled with deduction to find about about the
      topology of this micro molecular world. Representing the DNA as a
      diagram, we can describe recombination as indicated below.</p>
    <p>It is a GUESS that the replacement is a right-handed crossover as
      shown above. How can one tell if this guess is right? (See the
      articles above.) Experiments in processive recombination can be
      performed. If you did it with this form recombination the diagrams
      tell us that the results will be like this. A specific “spectrum”
      of knot types should emerge. One can look for these with the
      electron microscopy and in many cases the form of the
      recombination can be found by this topological analysis.</p>
    <p>
      Now you should think about this. I have described one example of
      how people have managed to map the unruly biology to a formal
      diagrammatic topological system and how this could be used to
      understand and even to find out about basically unobservable
      processes in the biology (the form of the recombination). The
      mathematical formalism into which things are mapped contains all
      sorts of possibilities of its own for improbable and not deducible
      structures. And the formalism admits to deductive analysis if we
      are clever enough to find the ways to do it. There is a lot of
      this kind of topological work going on in molecular biology and in
      the study of protein folding. I see this as an exemplar of how in
      the future it will be possible to flexibly interface biological,
      topological and mathematical problems. I</p>
    <p>In relation to the theme of the limits of formal systems, we see
      here that diagrammatic formal systems allow a very wide
      interaction among these different modes of working and if you were
      to look at the practices of topologists, graph theorists,
      combinatorialists, category theorists etc you would see that the
      sort of strait-laced limitations of the era of Russelian and
      Goedelian worries has been enfolded in a growing structure of
      expanding and interrelated formal systems that in their prolixity
      escape some of the problems of incompleteness. (But not all. See
      my previous email).</p>
    <div class="">Best,</div>
    <p>Lou</p>
    <p>On Feb 12, 2024, at 1:16 PM, Louis Kauffman <<a
        href="mailto:loukau@gmail.com" class="" moz-do-not-send="true">loukau@gmail.com</a>>
      wrote:</p>
    <blockquote type="cite"
      cite="mid:9178EF46-3997-4131-8B8D-283BE170F1CC@gmail.com">
      <div class="">
        <div class="">
          <blockquote type="cite" class="">
            <div class="">Dear Folks,<br class="">
              <div style="word-wrap: break-word; -webkit-nbsp-mode:
                space; -webkit-line-break: after-white-space;" class="">
                <div class="">Please examine the Kleene argument that
                  you cannot list all algorithms (that halt) because you
                  can form</div>
                <div class="">F(n) = F_{n}(n) + 1.</div>
                <div class="">This is exactly Cantor diagonal transposed
                  to algorithms.</div>
                <div class="">It is the core of incompleteness.</div>
                <div class="">It is what it is.</div>
                <div class="">You cannot sweep it under the rug.</div>
                <div class=""><br class="">
                </div>
                <div class="">This argument fits into many different
                  formal systems and once you place it there,</div>
                <div class="">then the fact that all algorithms in a
                  given formal system (not necessarily halting) can be
                  listed (it is routine to check if some text is an
                  algorithm, not routine to see if it halts), </div>
                <div class="">shows that there can be no way in the
                  formal system to decide whether algorithms halt. If
                  you could do that, you could list all the halting
                  algorithms and run into</div>
                <div class="">a contradiction from the above.</div>
                <div class=""><br class="">
                </div>
                <div class="">Thus (Turing)  the halting problem is
                  undecideable in a wide class of formal systems.</div>
                <div class=""><br class="">
                </div>
                <div class="">This part of the limitations of formal
                  systems is just what it is.</div>
                <div class=""><br class="">
                </div>
                <div class="">There is something else however and I
                  would like to illustrate it with the Goldbach problem.</div>
                <div class="">Try writing even numbers > 4 as a sum
                  of two odd primes.</div>
                <div class=""><br class="">
                </div>
                <div class="">6 = 3 + 2</div>
                <div class="">8 = 5 + 3</div>
                <div class="">10 = 7 + 3 = 5 + 5</div>
                <div class="">12 = 7 + 5</div>
                <div class="">14 = 11 + 3 = 7 + 7</div>
                <div class="">16 = 13 + 3 = 11 + 5 </div>
                <div class="">18 = 13 + 5 = 11 + 7</div>
                <div class="">20 = 17 + 3 = 13 + 7 </div>
                <div class="">22 = 19 + 3 = 17 + 5 = 11 + 11</div>
                <div class="">24 = 19 + 5 = 17 + 7 = 13 + 11</div>
                <div class="">26 = 23 + 3 = 19 + 5 = 13 + 13</div>
                <div class="">28 = 23 + 5 = 17 + 11 </div>
                <div class="">30 = 23 + 7 = 19 + 11 = 17 + 13 </div>
                <div class="">32 = 29 + 3 = 19 + 13 </div>
                <div class="">…</div>
                <div class="">These decomposition go up and down but the
                  number of decompositions grows as the even numbers get
                  larger.</div>
                <div class="">There is some principle here that we are
                  missing about how numbers get constructed. </div>
                <div class="">The problem to prove that there is at
                  least ONE way to write any even </div>
                <div class="">number greater than 4 as a sum of two odd
                  primes is completely open.</div>
                <div class="">That is the Goldbach Conjecture.</div>
                <div class="">It bet that 12 is the last time you get
                  only one decomposition for an even number into two odd
                  primes.</div>
                <div class=""><br class="">
                </div>
                <div class="">It is possible that by thinking about how
                  numbers are made</div>
                <div class="">we will find new principles by which to
                  reason about them and hence new formal systems,
                  unknown at this time.</div>
                <div class="">Any number theorist worth his or her salt
                  is going to think about this. This means that the
                  number theorist is thinking outside of the </div>
                <div class="">known formal systems, trying to find new
                  and better ways to work. This is normal. We need to
                  promote the fact that creative thinking may use formal
                  systems, but is</div>
                <div class="">not limited to using only systems that
                  already exist.</div>
                <div class="">Best,</div>
                <div class="">Lou</div>
                <div class=""><br class="">
                </div>
                <div class=""><br class="">
                  <div class="">
                    <blockquote type="cite" class="">
                      <div class="">On Feb 9, 2024, at 9:44 AM, eric
                        werner <<a href="mailto:eric.werner@oarf.org"
                          class="" moz-do-not-send="true">eric.werner@oarf.org</a>>
                        wrote:</div>
                      <br class="Apple-interchange-newline">
                      <div class="">
                        <meta http-equiv="Content-Type"
                          content="text/html; charset=UTF-8" class="">
                        <div class="">
                          <p class="">Dear Carlos,<br class="">
                          </p>
                          <p class="">Notice you contradicted yourself:<br
                              class="">
                          </p>
                          <div class="moz-cite-prefix">On 2/5/2024 4:43
                            PM, Carlos Gershenson wrote:<br class="">
                          </div>
                          <blockquote type="cite"
                            cite="mid:FB72F1AF-73F7-4618-8D73-268E76157648@gmail.com"
                            class="">It is clear that
                            models/descriptions will never be as rich as
                            the modeled/phenomena, and that is the way
                            it should be. As Arbib wrote, “a model that
                            simply duplicates the brain is no more
                            illuminating than the brain itself”. [1]</blockquote>
                          <p class="">On the one hand, you state that a
                            model/description will never be as rich as
                            the model/phenomena it describes. And, then
                            in the next sentence you quote Arbib who
                            presupposes that there could be a model that
                            duplicates the brain.  Duplicating the brain
                            presupposes that that model is as rich in
                            structure and information as the thing it
                            models, namely the brain.</p>
                          <p class="">Of course, Arbib is wrong. If we
                            did have model that duplicates the brain,
                            then given the model is something like an
                            LLM residing on my laptop, that model would
                            not only be as rich but richer in many ways
                            than the brain it modeled.  It would give us
                            unprecedented insight into the organization
                            and function of its architecture.</p>
                          <p class="">My point is that models are often
                            richer than the object that is modeled. 
                            They often have further dimensions that go
                            beyond the object modeled. This
                            extra-dimensionality and richness enable us
                            to understand that object and utilize it.</p>
                          <p class="">To be fair, you do state that
                            computers can go beyond axiomatic systems,
                            implying perhaps that they can model
                            phenomena that axiomatic systems cannot. 
                            But I am skeptical of what appears to be
                            your wish to throw all axiomatic systems
                            together and then get meaning out of such a
                            hodgepodge.  <br class="">
                          </p>
                          <p class="">I must admit I long for the beauty
                            of mathematics and logic, the crystalline
                            world of truth, even if Goedel and other's
                            seem to have made a mess of it.  </p>
                          <p class="">And yet if you actually read
                            Goedel's proof, reading as I did while a
                            student of Kleene (who was a student of
                            Goedel's at Princeton) and later teaching it
                            as I did to undergrads, that proof is itself
                            a thing of beauty even if a bit messy. </p>
                          <p class="">But Goedel did steal the core idea
                            from Cantor's diagonal method. And, someday
                            we may find that Cantor's method is flawed,
                            in yet another higher dimensional
                            mathematical space.  Which will bring us
                            back to the Greeks!<br class="">
                          </p>
                          <p class="">Thank you for your contribution,
                            Carlos, and remember this is all in good
                            fun, <br class="">
                          </p>
                          <p class="">-Eric<br class="">
                          </p>
                          <p class="">****<br class="">
                            Dr. Eric Werner, FLS <br class="">
                          </p>
                          <p class=""><br class="">
                          </p>
                          <div class=""><br
                              class="webkit-block-placeholder">
                          </div>
                          <div class="moz-cite-prefix">On 2/5/2024 4:43
                            PM, Carlos Gershenson wrote:<br class="">
                          </div>
                          <blockquote type="cite"
                            cite="mid:FB72F1AF-73F7-4618-8D73-268E76157648@gmail.com"
                            class="">
                            <meta http-equiv="content-type"
                              content="text/html; charset=UTF-8"
                              class="">
                            <div class="">In the 1920s, David Hilbert's
                              program attempted to get rid once and for
                              all from the paradoxes in mathematics that
                              had arisen from the work of Cantor,
                              Russell, and others. Even when Hilbert’s
                              PhD student — John von Neumann — was
                              working avidly on demonstrating that
                              mathematics were complete, consistent, and
                              decidable, Kurt Gödel proved in the early
                              1930s that formal systems are incomplete
                              and inconsistent, while Alan Turing proved
                              in 1936 their undecidability (for which he
                              proposed the "Turing Machine", laying the
                              theoretical basis for computer science).</div>
                            <div class=""><br class="">
                            </div>
                            <div class="">Digital computers have enabled
                              us to study concepts and phenomena for
                              which we did not have the proper tools
                              beforehand, as they process much more
                              information than the one our limited
                              brains can manipulate. These include
                              intelligence, life, and complexity.</div>
                            <div class=""><br class="">
                            </div>
                            <div class="">Even when computers have
                              served us greatly as "telescopes for
                              complexity", the limits of formal systems
                              are becoming even more evident, as we
                              attempt to model and simulate complex
                              phenomena in all their richness, which
                              implies emergence, self-organization,
                              downward causality, adaptation, multiple
                              scales, semantics, and more.</div>
                            <div class=""><br class="">
                            </div>
                            <div class="">Can we go beyond the limits of
                              formal systems? Well, we actually do it
                              somehow. It is natural to adapt to
                              changing circumstances, so we can say that
                              our "axioms" are flexible. Moreover, we
                              are able to simulate this process in
                              computers. Similar to an interpreter or a
                              compiler, we can define a formal system
                              where some aspects of it can be
                              modified/adapted. And if we need more
                              adaptation, we can generalize the system
                              so that a constant becomes a variable
                              (similar to oracles in Turing Machines).
                              Certainly, this has its limits, but our
                              adaptation is also limited: we cannot
                              change our physics or our chemistry,
                              although we have changed our biology with
                              culture and technology.</div>
                            <div class=""><br class="">
                            </div>
                            <div class="">Could it be that the problem
                              lies not in the models we have, but in the
                              modeling itself? We tend to forget the
                              difference between our models and the
                              modeled, between the map and the
                              territory, between epistemology and
                              ontology; simply because our language does
                              not make a distinction between phenomena
                              and our perceptions of them. When we say
                              "this system is
                              complex/alive/intelligent", we assume that
                              these are inherent properties of the
                              phenomenon we describe, forgetting that
                              the moment we name anything, we are
                              already simplifying and limiting it. It is
                              clear that models/descriptions will never
                              be as rich as the modeled/phenomena, and
                              that is the way it should be. As Arbib
                              wrote, “a model that simply duplicates the
                              brain is no more illuminating than the
                              brain itself”. [1]</div>
                            <div class=""><br class="">
                            </div>
                            <div class="">Still, perhaps we're barking
                              up the wrong tree. We also tend to forget
                              the difference between computability in
                              theory (Church-Turing's) and computability
                              in practice (what digital computers do).
                              There are non-Turing-computable functions
                              which we can compute in practice, while
                              there are Turing-computable functions for
                              which there is not enough time in the
                              universe to compute. So maybe we are
                              focussing on theoretical limits, while we
                              should be concerned more with practical
                              limits.</div>
                            <div class=""><br class="">
                            </div>
                            <div class="">As you can see, I have many
                              more questions than answers, so I would be
                              very interested in what everyone thinks
                              about these topics.</div>
                            <div class=""><br class="">
                            </div>
                            <div class="">I'll just share some idea I've
                              been playing with recently, although it
                              might be that it won't lead anywhere. For
                              lack of a better name, let's call them
                              "multi-axiom systems". For example in
                              geometry, we know that if we change the
                              5th axiom (about intersecting parallel
                              lines), we can go from Euclidean to other
                              geometries. We can define a "multi-axiom
                              geometry", so that we can switch between
                              different versions of the 5th axiom for
                              different purposes. In a similar way, we
                              could define a multi-axiom system that
                              contains several different formal systems.
                              We know we cannot have all at once
                              universal computation and completeness and
                              consistency. But then, in first-order
                              logic, we can have completeness and
                              consistency. In second-order logic we have
                              universal computation but not
                              completeness. In paraconsistent logics we
                              sacrifice consistency but gain other
                              properties. Then, if we consider a
                              multi-axiom system that includes all of
                              these and perhaps more, in theory we could
                              have in the same system all these nice
                              properties, but not at the same time.
                              Would that be useful? Of course, we would
                              need to find rules that would determine
                              when to change the axioms. Just to relate
                              this idea to last month's topic — as it
                              was motivated by Stu's and Andrea's paper
                              [2] — if we want to model evolution, we
                              can have "normal" axioms at short
                              timescales (and thus predictability), but
                              at longer (evolutionary) timescales, we
                              can shift axioms set, and then the "rules"
                              of biological systems could change,
                              towards a new configuration where we can
                              use again "normal" axioms.</div>
                            <div class=""><br class="">
                            </div>
                            <div class=""><br class="">
                            </div>
                            <div class=""><br class="">
                            </div>
                            <div class="">[1] Michael Arbib, The
                              Metaphorical Brain 2. Neural Networks and
                              Beyond (1989)</div>
                            <div class="">[2] Stuart Kauffman, Andrea
                              Roli. Is the Emergence of Life an Expected
                              Phase Transition in the Evolving Universe?
                              <a
href="https://urldefense.com/v3/__https://arxiv.org/abs/2401.09514v1__;!!D9dNQwwGXtA!Q9Wf2QzNb33Rbcm_rxf9I_P4EziZ3qwzNM9drNcS2M856SZcvJx6al-U8ZnYt5Fj0OfDWnNsNDd2RoZgOmc$"
                                moz-do-not-send="true" class="">https://arxiv.org/abs/2401.09514v1 </a></div>
                            <br class="">
                            <br class="">
                            <div class="">
                              <meta charset="UTF-8" class="">
                              <div dir="auto" style="letter-spacing:
                                normal; text-align: start; text-indent:
                                0px; text-transform: none; white-space:
                                normal; word-spacing: 0px;
                                -webkit-text-stroke-width: 0px;
                                text-decoration: none; overflow-wrap:
                                break-word; -webkit-nbsp-mode: space;"
                                class="">
                                <div dir="auto" style="text-align:
                                  start; text-indent: 0px;
                                  overflow-wrap: break-word;
                                  -webkit-nbsp-mode: space; line-break:
                                  after-white-space;" class="">
                                  <div dir="auto" style="text-align:
                                    start; text-indent: 0px;
                                    overflow-wrap: break-word;
                                    -webkit-nbsp-mode: space;
                                    line-break: after-white-space;"
                                    class="">
                                    <div dir="auto" style="text-align:
                                      start; text-indent: 0px;
                                      overflow-wrap: break-word;
                                      -webkit-nbsp-mode: space;
                                      line-break: after-white-space;"
                                      class="">
                                      <div dir="auto" style="text-align:
                                        start; text-indent: 0px;
                                        overflow-wrap: break-word;
                                        -webkit-nbsp-mode: space;
                                        line-break: after-white-space;"
                                        class="">
                                        <div style="letter-spacing:
                                          normal; text-transform: none;
                                          white-space: normal;
                                          word-spacing: 0px;
                                          text-decoration: none;
                                          -webkit-text-stroke-width:
                                          0px;" class="">Carlos
                                          Gershenson</div>
                                        <div class="">SUNY Empire
                                          Innovation Professor <br
                                            class="">
                                          Department of Systems
                                          Science and Industrial
                                          Engineering<br class="">
                                          <span
                                            class="Apple-converted-space">Thomas
                                            J. Watson College
                                            of Engineering and
                                            Applied Science<br class="">
                                            State University of New York
                                            at Binghamton<br class="">
                                            Binghamton, New York 13902 </span>USA<br
                                            class="">
                                        </div>
                                        <div style="letter-spacing:
                                          normal; text-transform: none;
                                          white-space: normal;
                                          word-spacing: 0px;
                                          text-decoration: none;
                                          -webkit-text-stroke-width:
                                          0px;" class=""><a
href="https://urldefense.com/v3/__https://tendrel.binghamton.edu__;!!D9dNQwwGXtA!Q9Wf2QzNb33Rbcm_rxf9I_P4EziZ3qwzNM9drNcS2M856SZcvJx6al-U8ZnYt5Fj0OfDWnNsNDd2yTKmSVg$"
                                            moz-do-not-send="true"
                                            class="">https://tendrel.binghamton.edu</a></div>
                                      </div>
                                    </div>
                                  </div>
                                </div>
                              </div>
                            </div>
                            <br class="">
                            <br class="">
                            <fieldset class="moz-mime-attachment-header"></fieldset>
                            <pre class="moz-quote-pre" wrap="">_______________________________________________
Fis mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Fis@listas.unizar.es" moz-do-not-send="true">Fis@listas.unizar.es</a>
<a class="moz-txt-link-freetext" href="http://listas.unizar.es/cgi-bin/mailman/listinfo/fis" moz-do-not-send="true">http://listas.unizar.es/cgi-bin/mailman/listinfo/fis</a>
----------
INFORMACIÓN SOBRE PROTECCIÓN DE DATOS DE CARÁCTER PERSONAL

Ud. recibe este correo por pertenecer a una lista de correo gestionada por la Universidad de Zaragoza.
Puede encontrar toda la información sobre como tratamos sus datos en el siguiente enlace: <a class="moz-txt-link-freetext" href="https://sicuz.unizar.es/informacion-sobre-proteccion-de-datos-de-caracter-personal-en-listas" moz-do-not-send="true">https://sicuz.unizar.es/informacion-sobre-proteccion-de-datos-de-caracter-personal-en-listas</a>
Recuerde que si está suscrito a una lista voluntaria Ud. puede darse de baja desde la propia aplicación en el momento en que lo desee.
<a class="moz-txt-link-freetext" href="http://listas.unizar.es/" moz-do-not-send="true">http://listas.unizar.es</a>
----------
</pre>
                          </blockquote>
                          <div id="DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2"
                            class=""><br class="">
                            <table style="border-top: 1px solid
                              #D3D4DE;" class="">
                              <tbody class="">
                                <tr class="">
                                  <td style="width: 55px; padding-top:
                                    13px;" class=""><a
href="https://urldefense.com/v3/__http://www.avg.com/email-signature?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient__;!!D9dNQwwGXtA!S9usrOp9JhvW8UwJEq9dcFtq7FKcSNqNVPec2sX1BgZjKXwC0mnBUV_SDjdu1Sa_AS3w3prDwKITzaqB41fYZVU$"
                                      target="_blank" class=""
                                      moz-do-not-send="true"><img
src="https://s-install.avcdn.net/ipm/preview/icons/icon-envelope-tick-green-avg-v1.png"
                                        alt="" style="width: 46px;
                                        height: 29px;" class=""
                                        moz-do-not-send="true"
                                        width="46" height="29"></a></td>
                                  <td style="width: 470px; padding-top:
                                    12px; color: #41424e; font-size:
                                    13px; font-family: Arial, Helvetica,
                                    sans-serif; line-height: 18px;"
                                    class="">Virus-free.<a
href="https://urldefense.com/v3/__http://www.avg.com/email-signature?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient__;!!D9dNQwwGXtA!S9usrOp9JhvW8UwJEq9dcFtq7FKcSNqNVPec2sX1BgZjKXwC0mnBUV_SDjdu1Sa_AS3w3prDwKITzaqB41fYZVU$"
                                      target="_blank" style="color:
                                      #4453ea;" class=""
                                      moz-do-not-send="true">www.avg.com</a></td>
                                </tr>
                              </tbody>
                            </table>
                            <a
                              href="x-msg://124/#DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2"
                              width="1" height="1" class=""
                              moz-do-not-send="true"> </a></div>
                        </div>
                        _______________________________________________<br
                          class="">
                        Fis mailing list<br class="">
                        <a href="mailto:Fis@listas.unizar.es" class=""
                          moz-do-not-send="true">Fis@listas.unizar.es</a><br
                          class="">
                        <a
                          href="http://listas.unizar.es/cgi-bin/mailman/listinfo/fis"
                          class="" moz-do-not-send="true">http://listas.unizar.es/cgi-bin/mailman/listinfo/fis</a><br
                          class="">
                        ----------<br class="">
                        INFORMACI�N SOBRE PROTECCI�N DE DATOS DE
                        CAR�CTER PERSONAL<br class="">
                        <br class="">
                        Ud. recibe este correo por pertenecer a una
                        lista de correo gestionada por la Universidad de
                        Zaragoza.<br class="">
                        Puede encontrar toda la informaci�n sobre como
                        tratamos sus datos en el siguiente enlace: <a
href="https://sicuz.unizar.es/informacion-sobre-proteccion-de-datos-de-caracter-personal-en-listas"
                          class="" moz-do-not-send="true">https://sicuz.unizar.es/informacion-sobre-proteccion-de-datos-de-caracter-personal-en-listas</a><br
                          class="">
                        Recuerde que si est� suscrito a una lista
                        voluntaria Ud. puede darse de baja desde la
                        propia aplicaci�n en el momento en que lo desee.<br
                          class="">
                        <a href="http://listas.unizar.es" class=""
                          moz-do-not-send="true">http://listas.unizar.es</a><br
                          class="">
                        ----------<br class="">
                      </div>
                    </blockquote>
                  </div>
                  <br class="">
                </div>
              </div>
            </div>
          </blockquote>
        </div>
        <br class="">
      </div>
    </blockquote>
    <p><br>
    </p>
  </body>
</html>