<div dir="ltr">





<p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">Dear Folks,</span></p><p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">It is worth pointing out (as Lawvere has indicated long ago) that the construction of fixed points, the Goedelian construction and the Cantor diagonalization process are all instances of </span></p>
<p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">a natural construction in Cartesian closed categories. </span></p><p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">Lawvere's remarks are relevant to the present discussion and can be understood in many ways.</span></p><p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">I talked about this in previous emails without a directt reference to Lawvere.</span></p><p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">Here is a copy of his paper.</span></p><p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">I have more to say about this, but will just send the paper in this email.</span></p><p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">Best,</span></p><p class="gmail-p1" style="margin:0px;font-variant-numeric:normal;font-variant-east-asian:normal;font-stretch:normal;font-size:12px;line-height:normal;font-family:Helvetica"><span class="gmail-s1" style="font-kerning:none">Lou Kauffman</span></p></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Fri, Dec 23, 2022 at 2:31 AM guillaume.bonfante <<a href="mailto:guillaume.bonfante@loria.fr">guillaume.bonfante@loria.fr</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
  
    
  
  <div>
    Dear all, <br>
    <br>
    End of the year, and now some spare time.  As a computer scientist,
    in my opinion,  Goedel's Incompleteness Theorem is touchy but not
    the right handle. As some of you mentioned below, I think that
    fix-points are much more promising. <br>
    <br>
    They have various forms. They exist at every layer of the
    arithmetical hierarchy (you don't need to implement recursive
    functions). So, a very flexible tool. <br>
    <br>
    All the best,<br>
    <br>
    Guillaume<br>
    <br>
    <br>
    <div>Le 05/12/2022 à 00:25, Louis Kauffman a
      écrit :<br>
    </div>
    <blockquote type="cite">
      
      Dear Sheri,
      <div>It would indeed be very helpful to have a zoom
        conversation about these themes.</div>
      <div>Please let me know when you would be available to
        have it.</div>
      <div>We could start with an hour meeting and discussion
        and then perhaps extend to a second meeting with some
        presentations.</div>
      <div>Included below is a slide show of mine that is a bit
        cryptic but does summarize some points of view.</div>
      <div>I have downloaded the papers you indicated in your
        email and will read them now.</div>
      <div>Very best,</div>
      <div>Lou </div>
      <br>
      <fieldset></fieldset>
      
      <div><br>
      </div>
      <div><br>
        <div>
          <blockquote type="cite">
            <div>On Dec 5, 2022, at 2:53 PM, Markose, Sheri
              <<a href="mailto:scher@essex.ac.uk" target="_blank">scher@essex.ac.uk</a>>
              wrote:</div>
            <br>
            <div>
              <div style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">Dear Louis, Pedro and All –<u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif">I
                    apologize again for not attending to the comments as
                    soon as they appear. Autumn term is my very busy
                    teaching term.  Also, one of the reasons why I got
                    waylaid is that I had to urgently send in my
                    external examiner review of a Thesis of Adam Svahn
                    (University of Sydney) on 25 Nov. I was free to
                    invite folk who I have had some convos with on this
                    topic and may be interested in the Foundations of
                    Information Systems online forum as participants and
                    potential leads on topics…  I do this somewhat
                    belatedly, my apologies again.<u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif"> </span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif"><span>(i)<span>           <span> </span></span></span></span><span style="font-size:12pt;font-family:Arial,sans-serif">The bulk of  Adam Svahn’s work
                    co-authored with Mikhail Prokopenko (S & P)  is
                    already published and can be found here <u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 21.3pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;border:1pt none windowtext;padding:0cm;background-color:white"><a href="https://urldefense.com/v3/__https://doi.org/10.1162/artl_a_00370__;!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5QxkryRYqf$" style="color:blue;text-decoration:underline" target="_blank"><span>https://doi.org/10.1162/artl_a_00370</span></a> 
                    and is relevant to our discussion.  While we are
                    still in the dark about<span> </span></span><span style="font-family:Arial,sans-serif">how
                    the near universal genomic (ACGT/U) alphabets
                    emerged, the genome clearly manifests an unbroken
                    chain of life with programs encoded in these
                    alphabets and their execution via gene expression
                    produce the somatic and phenotype identity of
                    organisms.</span><span style="font-size:12pt;font-family:Arial,sans-serif;border:1pt none windowtext;padding:0cm;background-color:white"><span> </span>S
                    & P share objectives as those that I have given<span> </span></span><span style="font-family:Arial,sans-serif">specifically
                    re how  self-reference and negator operations known
                    from Gödel (1931) incompleteness theorems and
                    undecidability thereof arise so the software based
                    genomic system is capable of endogenous novelty
                    production and evolvability.</span><span style="font-size:12pt;font-family:Arial,sans-serif"><u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 21.3pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-family:Arial,sans-serif"> </span></div>
                <div style="margin:0cm 0cm 0cm 21.3pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;border:1pt none windowtext;padding:0cm;background-color:white">S& R
                    give an interesting and plausible account of how
                    RNA-push down automata<span> </span></span><span style="font-family:Arial,sans-serif">with
                    their push and pop rules can produce limit cycle
                    dynamics or the extensively found repetitive motifs
                    sometimes called biological palindromes in the
                    genome. They argue that a 2-stack RNA-push down
                    automata is necessary to produce reflexive
                    structures where the automata in addition to simply
                    executing a program can use the 2<sup>nd</sup>stack
                    to reflect on codes and make changes to them.</span><span style="font-size:12pt;font-family:Arial,sans-serif"><u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"><span>(ii)<span style="font-style:normal;font-variant:normal;font-weight:normal;font-size:7pt;line-height:normal;font-family:"Times New Roman"">         <span> </span></span></span></span><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">Section
                    5 of S&P relates to undecidability as fixed
                    points of negation functions<span> </span><span style="background-color:yellow">and
                      has much in common Louis’s 15 Nov email point 5
                      below ( I have scissored and pasted this in the
                      email trail below) on the ease with which
                      self-negating Gödel sentences can be created by
                      logicians.</span>  However, biology unlike Gödel
                    (and other logicians) is not directly concerned
                    about undecidability, incompleteness, or whether a
                    program halts. I have stuck my neck out and said
                    that Gödel machinery used by biology and the
                    formidable genomic self-referential general
                    intelligence is to establish a hack free agenda for
                    the genome geared toward autonomous life.  <u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif">Thus, some further thought
                    needs to be expended as to how the negator operation
                    naturally occurs in biology. I have stated it is the
                    bio malware or the viral software that Eugene Koonin
                    et al have said has been coextensive with life
                    having provided the copy/replicate program possibly
                    in what the computer literature calls Quines.  The
                    latter are distinct from online self-assembly of
                    somatic self which requires gene expression or
                    machine execution as in the ribosomal machines.  To
                    make out gene-codes that self-assemble the organism
                    have been changed/tampered with by software of
                    non-self other appears to be a pressing matter for
                    homeostasis which is clearly a bio-cybersecurity
                    problem.<span> </span><u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">    <u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"><span>(iii)<span>        <span> </span></span></span></span><span style="font-size:12pt;font-family:Arial,sans-serif">The over 85% offline recording
                    in the Thymic MHC receptors of expressed genes in
                    humans for example brings us to the points made by
                    Pedro in his 1 December email on<span> </span><span style="color:rgb(31,73,125)">Self and
                      non-self antigen recognition in Adaptive Immune
                      System.  Thank you Pedro for the nugget of
                      information of how the MHC receptors has two
                      strips of <span> </span></span></span><span style="font-size:12pt;font-family:Arial,sans-serif">8-10 amino acids residues for
                    Class 1, mostly "self",  and 13-18 amino acids
                    residues for Class 2 for non-self.   I did not know
                    this.  I will read "Sensing the world and its
                    dangers: An evolutionary perspective in<br>
                    neuroimmunology." By Aurora Krauset al. In, eLife
                    2021;10:e66706. DOI:<span> </span></span><span style="font-size:12pt;font-family:Arial,sans-serif"><a href="https://urldefense.com/v3/__https://linkprotect.cudasvc.com/url?a=https*3a*2f*2fdoi.org*2f10.7554*2feLife.66706&c=E,1,mnuJARbiz5DP5j0H1X0ciBwcFLUNxlmdaZCNXX6tuWJ7oLj-36Vg9-Wauvxar1tDnTFYRaRF0eqlIxd2zzkL3LoskpUW1kBa2CHZaMqYUapU2iEi&typo=1__;JSUlJSU!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5Qxu9jb2v9$" style="color:blue;text-decoration:underline" target="_blank">https://doi.org/10.7554/eLife.66706</a></span><span style="font-size:12pt;font-family:Arial,sans-serif">.<br>
                    <br>
                  </span><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"><u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">                 If you recall
                    how the Recursive Fixed Point Theorem which starts
                    with a mirror mapping between online self-assembly
                    program execution,<span> </span></span><i><span style="font-size:12pt;font-family:Symbol">f</span></i><i><sub><span style="font-size:12pt">g</span></sub></i><i><span style="font-size:12pt">(g)</span></i><span style="font-size:12pt">)</span><span> </span><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> that
                    have halted and create somatic identity and the<span> </span><i>offline</i><span> </span>record of
                    the<span> </span><br>
                                      same in a<span> </span><span style="background-color:yellow">2-<span> </span></span> <span style="background-color:yellow">place</span> 
                    function <span> </span></span><span style="font-size:12pt;font-family:Symbol;color:rgb(31,73,125)">s</span><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"><span> </span>(g, g) in
                    the MHC receptors creating the Thymic self. I say
                    the first g from the left in<span> </span></span><span style="font-size:12pt;font-family:Symbol;color:rgb(31,73,125)">s</span><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"><span> </span>(g, g)  and
                    changes thereof relate to what happens to self and
                    the second is self’s record of what<span> </span><br>
                                    the other has done to self.  So if
                    the 2<sup>nd</sup><span> </span>entry is
                    different from the first entry in<span> </span></span><span style="font-size:12pt;font-family:Symbol;color:rgb(31,73,125)">s</span><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"><span> </span>(g, g) it is
                    off diagonal etc.  The non-self hostile other is a
                    projection of self g ‘gene codes’ and those <span> </span><i>f
                      ¬ !</i>  which are reactive to the self g-<br>
                                    codes denoted as g¬.  As we know an
                    astronomic number of potential indexes g¬ are
                    generated by the RAG genes. <u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">                 How the immune
                    system identifies a yet to happen attack by a novel
                    non-self antigen requires the first part of the fix
                    point of the latter generated in the Thymic T-cell
                    receptors to sync with those generated in the<span> </span><br>
                                     the peripheral MHC receptors when
                    the said expressed genes are attacked (like the lung
                    tissue etc)  in real time.  The latter is
                    experientially generated and while the former is a
                    spectacular case of predictive coding. So<span> </span><br>
                                     unless the T-cell receptor has
                    cloned the index of the novel bio-malware in advance
                    via V(D) J,  the AIS will not be recognize the
                    biomalware should it attack.  I have said  fixed
                    point for the software/algorithm<span> </span><i>f
                      ¬ !</i>  requires<span> </span><br>
                                     the full use of say Rogers Second
                    Recursion Theorem and the Gödel Sentence thereof,
                    viz. far more machinery  self-referential structures
                    than in the original Gödel (1931) formats.   <br>
                    <br>
                    <u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"><span>(iv)<span style="font-style:normal;font-variant:normal;font-weight:normal;font-size:7pt;line-height:normal;font-family:"Times New Roman"">        <span> </span></span></span></span><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">Finally,
                    there is the problem that the information processing
                    for advanced code based systems is one akin to
                    Formal Systems  of Theorems and non-Theorems. For
                    this Raymond Smullyan’s book of the same name is
                    what gave me the idea that a tight grip will be
                    exerted with all inference based recursive
                    reductions and Gödel Sentences when some potential
                    negations to theorems viz. the halting self-assembly
                    gene codes that generate the organism, are in the
                    offing. This self-referential genomic blockchain
                    distributed ledger of the unbroken chain of life has
                    similarities with manmade BCDL, but latter are not
                    self-referential with individual nodes being able to
                    self-report attacks.<u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">Louis,
                    I would love to have a zoom chat with you as it will
                    be great to sound you out more. You are right about
                    the mindboggling variants of self-reference ….<u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">Ditto
                    for many others who I hope to be in touch with
                    soon. <u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">Many
                    thanks again for the great comments.<u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">All
                    best<u></u><u></u></span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm 0cm 0cm 54pt;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">Sheri                <u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">            <u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:Arial,sans-serif;color:rgb(31,73,125)">                   <u></u><u></u></span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                <div>
                  <div style="border-style:solid none none;border-top-color:rgb(225,225,225);border-top-width:1pt;padding:3pt 0cm 0cm">
                    <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><b><span lang="EN-US">From:</span></b><span lang="EN-US"><span> </span>Pedro C.
                        Marijuán <<a href="mailto:pedroc.marijuan@gmail.com" style="color:blue;text-decoration:underline" target="_blank">pedroc.marijuan@gmail.com</a>><span> </span><br>
                        <b>Sent:</b><span> </span>01
                        December 2022 13:03<br>
                        <b>To:</b><span> </span>Markose,
                        Sheri <<a href="mailto:scher@essex.ac.uk" style="color:blue;text-decoration:underline" target="_blank">scher@essex.ac.uk</a>>;
                        Louis Kauffman <<a href="mailto:loukau@gmail.com" style="color:blue;text-decoration:underline" target="_blank">loukau@gmail.com</a>><br>
                        <b>Cc:</b><span> </span>fis <<a href="mailto:fis@listas.unizar.es" style="color:blue;text-decoration:underline" target="_blank">fis@listas.unizar.es</a>>;<span> </span><a href="mailto:guillaume.bonfante@mines-nancy.univ-lorraine.fr" style="color:blue;text-decoration:underline" target="_blank">guillaume.bonfante@mines-nancy.univ-lorraine.fr</a><br>
                        <b>Subject:</b><span> </span>Re:
                        [Fis] A new discussion session<u></u><u></u></span></div>
                  </div>
                </div>
                <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">Dear Sheri, Lou, and
                    all discussants,<span><u></u><u></u></span></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">It is a pity that
                    this excellent discussion has taken place in
                    complicated academic weeks, as it has been caught in
                    a sort of "punctuated equilibrium" of longer stasis
                    than activities in our evolutionary list. Well, I
                    have a couple of very brief comments:<span> </span><u></u><u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">First, emphasizing
                    that one of the references in Youri's last messages
                    should be obligated reading for biologically
                    interested parties:  "Sensing the world and its
                    dangers: An evolutionary perspective in<br>
                    neuroimmunology." By Aurora Krauset al. In, eLife
                    2021;10:e66706. DOI:<span> </span><a href="https://urldefense.com/v3/__https://linkprotect.cudasvc.com/url?a=https*3a*2f*2fdoi.org*2f10.7554*2feLife.66706&c=E,1,mnuJARbiz5DP5j0H1X0ciBwcFLUNxlmdaZCNXX6tuWJ7oLj-36Vg9-Wauvxar1tDnTFYRaRF0eqlIxd2zzkL3LoskpUW1kBa2CHZaMqYUapU2iEi&typo=1__;JSUlJSU!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5Qxu9jb2v9$" style="color:blue;text-decoration:underline" target="_blank">https://doi.org/10.7554/eLife.66706</a><span>.</span><span> </span>In this
                    vein, I will follow with the argument that the
                    multicellular self is a composite, an association
                    with a microbial consortium that probably was the
                    big evolutionary cause to create a defense system of
                    such a great complexity.  The innate immune system
                    would represent the evolutionary learning about
                    those dangers, with scores of different components
                    and pattern recognition strategies...<u></u><u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">And second, about the
                    adaptive immune system, it is where the ongoing
                    mostly formal discussion would apply (can we agree
                    with that?). Then, it seems that the core of this
                    adaptive immune branch is the Major
                    Histocompatibility Complex molecule (MHC). This MHC
                    molecules of two major classes are highly complex
                    (polygenic and polymorphic) and they are in charge
                    of presenting to lymphocyte T cells the protein
                    fragments churned out from the proteosomes inside
                    cells (fragments of variable lenght: 8-10 amino
                    acids residues for Class 1, mostly "self",  and
                    13-18 amino acids residues for Class 2, mostly "non
                    self"). Then, the thymus is in charge of
                    deactivating the T cells loaded with self stuff. My
                    point is that the defense in front of the non-self
                    is based on<span> </span><u>indirect products of protein translation</u>.
                    This causes me some uneasiness, as protein
                    translation (see Youri's presentation months ago)
                    introduces a layer of extra complexity, not to speak
                    the processing via proteosomes. Further, with just
                    10 or 12 amino acids can we faithfully ascertain
                    algorithmic non-self provenance??<span> </span><u></u><u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">Well, Sheri is far
                    more acknowledged with all this stuff. And perhaps
                    Lou can say something about the formal
                    distinguishability of 10-12 aa.<u></u><u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">Best--Pedro<u></u><u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(31,73,125)"> </span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><b><span lang="EN-US">From:</span></b><span lang="EN-US"><span> </span>Louis
                      Kauffman<span> </span></span><a href="mailto:loukau@gmail.com" style="color:blue;text-decoration:underline" target="_blank"><span lang="EN-US">loukau@gmail.com</span></a><span lang="EN-US"><span> </span><br>
                      <b>Sent:</b><span> </span>15
                      November 2022 23:02<br>
                      <b>To:</b><span> </span>Markose,
                      Sheri<span> </span></span><a href="mailto:scher@essex.ac.uk" style="color:blue;text-decoration:underline" target="_blank"><span lang="EN-US">scher@essex.ac.uk</span></a><span lang="EN-US"><br>
                      <b>Cc:</b><span> </span>"Pedro C.
                      Marijuán"<span> </span></span><a href="mailto:pedroc.marijuan@gmail.com" style="color:blue;text-decoration:underline" target="_blank"><span lang="EN-US">pedroc.marijuan@gmail.com</span></a><span lang="EN-US">; fis<span> </span></span><a href="mailto:fis@listas.unizar.es" style="color:blue;text-decoration:underline" target="_blank"><span lang="EN-US">fis@listas.unizar.es</span></a><span lang="EN-US">;<span> </span></span><a href="mailto:guillaume.bonfante@mines-nancy.univ-lorraine.fr" style="color:blue;text-decoration:underline" target="_blank"><span lang="EN-US">guillaume.bonfante@mines-nancy.univ-lorraine.fr</span></a><span lang="EN-US"><br>
                      <b>Subject:</b><span> </span>Re: [Fis]
                      A new discussion session<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">Sheri,<span><u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">I will try to respond
                    to your letter about the post Goedel structures by
                    first quoting the last part of my previous letter
                    that discusses Goedelian ideas from the point of
                    view of fixed points.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">My letter was quite
                    long, and it is possible to not get to the second
                    half.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">Note also that the
                    first half is based on a referential situation g
                    —> F where #g ——> Fg is what I call the
                    Indicative Shift of g —> F. This is formal and
                    does not assume anythng other than arrow structure.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">With g —> F# we
                    have #g —> F#g making F#g refer to its own name.
                    There is more to say herd and references that I
                    cannot send to the list, so I will get a dropbox for
                    it and further discussion later today.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">Best,<u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">Lou K.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">##########<u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">It is a very interesting
                      question whether such encoding or such multiple
                      relationships to context occur in biology. Here
                      are some remarks.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">1. In biology is is NORMALLY
                      the case that certain key structures have multiple
                      interpretations and uses in various contexts.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">The understanding of such
                      multiple uses and the naming of them requires an
                      observer of the biology. Thus we see the action of
                      a cell membrane and we see the action of mitosis,
                      and so on.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">2. There are implicit
                      encodings in biology such as the sequence codes in
                      DNA and RNA and their unfoldment. To what extent
                      do they partake of the properties of Goedel
                      coding?<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">3. The use of the Goedel
                      coding in the Incompleteness theorem depends
                      crucially on the relationship of syntax and
                      semantic in the formal system and in the
                      mathematician’s interpretation of the workings of
                      that system. The Goedel argument depends upon the
                      formal system S being seen as a mathematical
                      object that itself can be studied for its
                      properties and behavior.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">When we speak of the truth
                      of G, we are speaking of our assessment of the
                      possible behaviour of S, given its consistency. We
                      are reasoning about S just as Euclid reasons about
                      the structure of right triangle.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">4. In examining biological
                      structures we take a similar position and reason
                      about what we know about them. Sufficiently
                      complex biological structures can be seen as
                      modeled by certain logical formal systems.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">And then Goedelian reasoning
                      can be applied to them. This can even be extended
                      to ourselves. Suppose that I am modeled correctly
                      in my mathematical reasoning by a SINGLE
                      CONSISTENT FORMAL SYSTEM S.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Then “I” can apply the above
                      proof of Goedel’s Therem to S and deduce that G
                      cannot be proven by S. Thus “I” have exceeded the
                      capabilities of S. Therefore it is erroneous to
                      assume that my mathematical reasoning is
                      encapsulated by a single formal system S. If I am
                      a formal system, that system must be allowed to
                      grow in time. Such reasoning as this is subtle,
                      but the semantics of the relationship of
                      mathematicians and the formal systems that they
                      study is subtle and when biology is brought in the
                      whole matter becomes exceedingly interesting.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">5. We man not need numbers
                      to have these kinds of relationships. And example
                      is the Smullyan Machine that prints sequences of
                      symbols from the alphabet {~,P,R} on a tape.
                      Sequences that begin with P,~P,PR and ~PR are
                      regarded as meaningful, with the meanings:<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">PX: X can be printed.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">~PX: X cannot be printed.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">PRX: XX can be printed.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">~PRX: XX cannot be printed.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Here X is any string of the
                      symbols {~,P,R}.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Thus PR~~P means that XX can
                      be printed where X = ~~P. Thus PR~~P means that
                      ~~P~~P can be printed.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">By printed we mean on one
                      press of the button on the Machine, a string of
                      characters is printed.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">IT IS ASSUMED THAT THE
                      SMULLYAN MACHINE ALWAYS TELLS THE TRUTH WHEN IT
                      PRINTS A MEANINGFUL STATEMENT.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Then we have the<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Theorem. There are
                      meaningful true strings that the Smullyan Machine
                      cannot print.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">This is a non-numerical
                      analog of the Goedel Theorem. And the string that
                      cannot be printed is G = ~PR~PR.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">For you see that G is
                      meaningful and since G = ~PRX, G says that XX
                      cannot be printed. But X = ~PR and XX = ~PR~PR =
                      G. So G says that G cannot be printed.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">If the machine were to print
                      G, it would lie. And the machine does not lie.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Therefore G is unprintable.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">But this is what G says.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">So we have established the
                      truth of G and proved the Theorem.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">6. Examine this last
                      paragraph 5. The Machine is like an organism with
                      a limitation. This limitation goes through the
                      semantics of reference. ~PRX refers to XX and so
                      can refer to itself if we take X = ~PR. ~PX refers
                      to X and cannot refer to itself since it is longer
                      than X. In biological coding the DNA code is
                      fundamentally smaller or equal to the structure to
                      which it refers.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Thus the self-reproduction
                      of the DNA is possible since DNA = W+C the
                      convention of the Watson and Crick strand and each
                      of W and C can by themselves engage in an action
                      to encode, refer to, the other strand. W can
                      produce a copy of C in the form W+C and C can
                      produce a copy of W in the form W+C each by using
                      the larger environment. Thus W+C refers to itself,
                      reproduces itself by a method of encoding quite
                      similar to the self reference of the Smullyan
                      Machine.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">7. Von Neuman devised a
                      machine that can build itself. B is the von Neuman
                      machine and B.x —> X,x where x is the plan or
                      blueprint or code for and entity X. B builds X
                      with given the blueprint x.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Then we have B,b —> B,b
                      where b is the blueprint for B. B builds itself
                      from its own blueprint. I hope you see the analogy
                      with the Goedel code.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">8. I will stop here. The
                      relationships with biology are very worth
                      discussing.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Before stopping it is worth
                      remarking that the Maturana Uribe Varela
                      autopoeisis is an example of a system arising into
                      a form of self-reference that has a lifetime due
                      to the probabilisitic dynamics of its process.<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"> ###############<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Best,<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif">Lou Kauffman<u></u><u></u></span></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:10pt;font-family:Arial,sans-serif"><br>
                      <br>
                    </span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><u></u> <u></u></div>
                </div>
                <div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">El 15/11/2022 a las
                    21:19, Markose, Sheri escribió:<u></u><u></u></div>
                </div>
                <blockquote style="margin-top:5pt;margin-bottom:5pt">
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Dear Louis, dear
                    Colleagues - <span> </span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Louis has given an
                    excellent exposition of Gödel Numbering (g.n) (your
                    point number 2 on coding and semantics is giving me
                    food for thought) , giving example of prime
                    factorization and also of Gödel Sentence as one that
                    states its own unprovability.  Unlike statements
                    like  "this is false", GS is not paradoxical and in
                    a consistent system it is a theorem with a
                    constructive g.n. The latter in terms of the prime
                    factorization format, it is indeed a Hilbert 10
                    Diophantine equation with no integer solutions.  A
                    remarkable achievement in maths, considering Gödel
                    was only 23 years of age ....   But what has this
                    got to do with Biology and novelty production, the
                    objectives of the my FIS discussion ?   <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">In view of brevity and
                    also urged by Pedro, I dropped a couple of
                    paragraphs in my FIS kick off submission as to why
                    we need to exceed Gödel (1931) and couch the Gödel
                    Incompleteness Results and the Gödel Sentence with a
                    fuller understanding of algorithms as encoded
                    instructions and as machine executable codes, of the
                    notion of recursive enumeration (re) and re sets
                    that was developed in the Emil Post (1944).  I hope
                    Louis Kauffman can comment on the the application of
                    the fuller Gödel-Turing -Post-Rogers framework
                    mentioned in my FIS note and in my papers cited
                    there.    <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">1. I have found the
                    following statement by Joel Hamkins (  :<span> </span><a href="https://urldefense.com/v3/__https://linkprotect.cudasvc.com/url?a=http*3a*2f*2fjdh.hamkins.org*2fwp-content*2fuploads*2fA-review-of-several-fixed-point-theorems-1.pdf&c=E,1,bKIlk9p4sIB5v1zLhbA_VCdX_aoMSPljj6KZdLjCesxOjPwYqUF5PkC4wqvoWq0qqGndGHjZ6ELzpZ8IhqbUDEGNINdm7Da4GNcSgCn3k0us&typo=1__;JSUlJSUl!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5Qxl8pLdy3$" style="color:blue;text-decoration:underline" target="_blank"><span style="font-size:11pt;font-family:Calibri,sans-serif">http://jdh.hamkins.org/wp-content/uploads/A-review-of-several-fixed-point-theorems-1.pdf</span></a><span> </span>) useful as
                    it makes an important observation that the original
                    Gödel (1931) framework permits an encodable
                    proposition to make statements about itself while
                    Second Recursion Theorems (SRT) also called Fixed
                    Point Theorems  are needed “to construct
                    programs/algorithms that refer to themselves”.  The
                    terms programs and algorithms will be used
                    interchangeably.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif">I choose Rogers Fixed
                    Point Theorem of (total) computable functions
                    starting with the staple I have already indicated
                    Diag (g) (RHS of (8) below) is what Neil
                    Gerschenfeld  calls ribosomal self-assembly machines
                    in gene expression where the program<span> </span><i>g
                      builds the<span> </span></i>machine
                    that runs g.<span> </span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">II. The first
                    requirement of a system to identify Fixed Points
                    viz. self-referential constructions of
                    algorithms/programs is (8) viz to identify  what
                    function/algorithm has altered the Diag (g).<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"><span id="m_3057625756610017441cid:image001.png@01D905CE.ACBBA200"><image001.png></span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">When online gene
                    expression takes place on RHS of (8), viz. these
                    programs have halt commands  and builds the somatic
                    and phenotype identity of vertebrates online, the
                    offline record of this is made in the Thymus that
                    can not only represent the Thymic/immune self but
                    also concatenate changes thereof. <span> </span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">I have suggested that
                    the Adaptive Immune System and the Mirror Neuron
                    System have these structures in (8).  And the domain
                    of self-halting machines as in (8) are the Theorems
                    of the system and a subset of Post (1944) Creative
                    Set.   The non-Theorems have codes say<span> </span><span style="font-size:12pt">g<sup>¬</sup></span><span> </span>which cannot
                    halt in a formal system that is consistent.  To my
                    mind, the embodiment via the physical self being
                    self-assembled and an offline record of this on LHS
                    of (8) is what fuses syntax and semantics.<span> </span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">II. Once, (8) is in
                    place, the Adaptive immune system has to identify
                    novel negation software function<span> </span><i>f<sup>¬!<span> </span></sup></i><sub> </sub>of non-self antigens which is an
                    uncountable infinite possibilities. Hence the close
                    to astronomic search with V(D) J of  10<sup>20<span> </span></sup>– 10<span> </span><sup>30</sup><span> </span>) of
                    non-self antigens  that can hijack the self-
                    assembly machines as recorded  on RHS of (8).  Only
                    from knowledge of self can the hostile other, in the
                    case of the AIS, be identified.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">III.  Roger Fixed Point
                    assures us that the indexes of the fixed point for<span> </span><i>f<sup>¬!<span> </span></sup></i><sub>  </sub>be generated. I have cced
                    Guillame Bonfante who I think was among the first
                    (with coauthors, 2006) to suggest how SRT can be
                    used to identify computer viruses. But they do not
                    use the full force of Self-Ref and Self -Rep  and
                    only implicitly use Post Creative and Productive
                    Sets. The index of the Godel Sentence for the fixed
                    point will endogenously lie outside of Post listable
                    or recusively enumerable set for Theorems and known
                    non-Theorems.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">IV. From these Gödel
                    Sentences produced in the immune-cognitive systems,
                    the explicit use of Post (1944) Theorems indicates
                    how novel antibodies cannot be produced in the
                    absence of the Gödel Sentence which allows a biotic
                    element to self-report it is under attack.<span> </span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">V. In conclusion, while
                    it has become fashionable for some like Jurgen 
                    Schmidhuber to claim that there can be endogenous
                    self improving recursive novelty (he calls them
                    Gödel machines) , the Gödel Logic says that the
                    original theorems and self-codes are kept
                    unchanged/hack free and novelty is produced only in
                    response to adversarial attacks of self codes.  So
                    the AIS story is somatic  hypermutation so that
                    nothing in the genome changes.  As to how the
                    germline itself changes, needs more investigation,
                    in Biosystems paper, I suggest something very
                    briefly.   <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">So thankyou all again
                    for your in depth comments and interest.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Best Regards<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Sheri<span> </span><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">-----Original
                    Message-----<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">From: Fis <<a href="mailto:fis-bounces@listas.unizar.es" style="color:blue;text-decoration:underline" target="_blank">fis-bounces@listas.unizar.es</a>>
                    On Behalf Of Louis Kauffman<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Sent: 08 November 2022
                    00:13<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">To: "Pedro C. Marijuán"
                    <<a href="mailto:pedroc.marijuan@gmail.com" style="color:blue;text-decoration:underline" target="_blank">pedroc.marijuan@gmail.com</a>><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Cc: fis <<a href="mailto:fis@listas.unizar.es" style="color:blue;text-decoration:underline" target="_blank">fis@listas.unizar.es</a>><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Subject: Re: [Fis] A
                    new discussion session<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">CAUTION: This email was
                    sent from outside the University of Essex. Please do
                    not click any links or open any attachments unless
                    you recognise and trust the sender. If you are
                    unsure whether the content of the email is safe or
                    have any other queries, please contact the IT
                    Helpdesk.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Dear Pedro,<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Here are some comments
                    about Goedel numbering and coding.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">It is interesting to
                    think about Goedel numbering in a biological
                    context.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Actually we are talking
                    about how a given entity has semantics that can vary
                    from context to context.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">It is not simply a
                    matter of assigning a code number. If g —> F is
                    the relation of a Goedel number g to a statement F,
                    then we have two contexts for F.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">1. F as a well formed
                    formula in a formal system S.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">2. g as a number in
                    either a number system for an observer of S or g as
                    a number in S, but g, as a representative for F can
                    be regarded in the system S with the meanings so
                    assigned.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Thus we have produced
                    by the assignment of Goedel numbers a way for a
                    statement F to exist in the semantics of more than
                    one context.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">This is the key to the
                    references and self-references of the Goedelian
                    situations.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Lets look at this more
                    carefully. Recall that there is a formal system S
                    and that to every well formed formula in S, there is
                    a code number g = g(S). The code number can be
                    produced in many ways.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">For example, one can
                    assign different index numbers n(X) to each distinct
                    generating symbol in S. Then with an expression F
                    regarded as an ordered string of symbols, one can
                    assign to F the product of the prime numbers, in
                    their standard order, with exponents the indices of
                    the sequence of characters that compose F. For
                    example, g(~ x^2 = 2) = 2^{n(~)}
                    3^{n(x)}5^{n(^)}7^{n(2)}11^{n(=)}13^{n(2)}. From
                    such a code, one can retrieve the original formula
                    in a unique way.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">The system S is a
                    logical system that is assumed to be able to handle
                    logic and basic number theory. Thus it is assumed
                    that S can encode the function g: WFFS(S) —> N
                    where N denotes the natural numbers.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">And S can decode a
                    number to find the corresponding expression as well.
                    It is assumed that S as a logical system, is
                    consistent.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">With this backgound,
                    let g —> F denote the condition that g = g(F).
                    Thus I write a reference g —> F for a
                    mathematical discussion of S, to indicate that g is
                    the Goedel number of F.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Now suppose that F(x)
                    is a formula in S with a free variable x. Free
                    variables refer to numbers. Thus if I write x^2 = 4
                    then this statement can be specialized to 2^2 = 4
                    with x =2 and the specialization is true.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Or I can write 3^2 = 4
                    and this is a false statement. Given F(x) and some
                    number n, I can make a new sentence F(n).<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Now suppose that<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">g —> F(x).<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Then we can form F(g)
                    and this new statement has a Goedel number. Let #g
                    denote the Goedel number of F(g).<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">#g —> F(g).<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">This # is a new
                    function on Goedel numbers and also can be encoded
                    in the system S. I will abbreviate the encoding into
                    S by writing #n for appropriate numbers n handled by
                    S.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Then we can consider<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">F(#x) and it has a
                    Goedel number<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">h —> F(#x)<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">And we can shift that
                    to<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">#h —> F(#h).<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">This is the key point.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Now we have constructed
                    a number #h so that F(#h) discusses its own Goedel
                    number.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">This construction
                    allows the proof of the Goedel Incompleteness
                    Theorem via the sentence B(x) that states<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">B(x) =  “The statement
                    with Goedel number x is provable in S.” (This can
                    also be encoded in S.)<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">We then construct<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">h—> ~B(#x)<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">and<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">#h —> ~B(#h)<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">and obtain the
                    statement<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">G= ~B(#h).<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">G states the
                    unprovability of the Goedel decoding of #h.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">But the Goedel decoding
                    of #h is the statement G itself.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Thus G states its own
                    unprovability.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Therefore, S being
                    consistent, cannot prove G.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">By making these
                    arguments we have have proved that G cannot be
                    proved by S.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Thus we have shown that
                    G is in fact true.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">We have shown that
                    there are true statements in number theory
                    unprovable by system S..<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">##########################<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">The above is a very
                    concise summary of the proof of Goedel’s
                    Incompleteness Theorem, using Goedel number
                    encoding.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">It is a very
                    interesting question whether such encoding or such
                    multiple relationships to context occur in biology.
                    Here are some remarks.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">1. In biology is is
                    NORMALLY the case that certain key structures have
                    multiple interpretations and uses in various
                    contexts.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">The understanding of
                    such multiple uses and the naming of them requires
                    an observer of the biology. Thus we see the action
                    of a cell membrane and we see the action of mitosis,
                    and so on.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">2. There are implicit
                    encodings in biology such as the sequence codes in
                    DNA and RNA and their unfoldment. To what extent do
                    they partake of the properties of Goedel coding?<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">3. The use of the
                    Goedel coding in the Incompleteness theorem depends
                    crucially on the relationship of syntax and semantic
                    in the formal system and in the mathematician’s
                    interpretation of the workings of that system. The
                    Goedel argument depends upon the formal system S
                    being seen as a mathematical object that itself can
                    be studied for its properties and behavior.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">When we speak of the
                    truth of G, we are speaking of our assessment of the
                    possible behaviour of S, given its consistency. We
                    are reasoning about S just as Euclid reasons about
                    the structure of right triangle.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">4. In examining
                    biological structures we take a similar position and
                    reason about what we know about them. Sufficiently
                    complex biological structures can be seen as modeled
                    by certain logical formal systems.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">And then Goedelian
                    reasoning can be applied to them. This can even be
                    extended to ourselves. Suppose that I am modeled
                    correctly in my mathematical reasoning by a SINGLE
                    CONSISTENT FORMAL SYSTEM S.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Then “I” can apply the
                    above proof of Goedel’s Therem to S and deduce that
                    G cannot be proven by S. Thus “I” have exceeded the
                    capabilities of S. Therefore it is erroneous to
                    assume that my mathematical reasoning is
                    encapsulated by a single formal system S. If I am a
                    formal system, that system must be allowed to grow
                    in time. Such reasoning as this is subtle, but the
                    semantics of the relationship of mathematicians and
                    the formal systems that they study is subtle and
                    when biology is brought in the whole matter becomes
                    exceedingly interesting.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">5. We man not need
                    numbers to have these kinds of relationships. And
                    example is the Smullyan Machine that prints
                    sequences of symbols from the alphabet {~,P,R} on a
                    tape. Sequences that begin with P,~P,PR and ~PR are
                    regarded as meaningful, with the meanings:<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">PX: X can be printed.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">~PX: X cannot be
                    printed.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">PRX: XX can be printed.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">~PRX: XX cannot be
                    printed.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Here X is any string of
                    the symbols {~,P,R}.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Thus PR~~P means that
                    XX can be printed where X = ~~P. Thus PR~~P means
                    that ~~P~~P can be printed.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">By printed we mean on
                    one press of the button on the Machine, a string of
                    characters is printed.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">IT IS ASSUMED THAT THE
                    SMULLYAN MACHINE ALWAYS TELLS THE TRUTH WHEN IT
                    PRINTS A MEANINGFUL STATEMENT.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Then we have the<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Theorem. There are
                    meaningful true strings that the Smullyan Machine
                    cannot print.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">This is a non-numerical
                    analog of the Goedel Theorem. And the string that
                    cannot be printed is G = ~PR~PR.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">For you see that G is
                    meaningful and since G = ~PRX, G says that XX cannot
                    be printed. But X = ~PR and XX = ~PR~PR = G. So G
                    says that G cannot be printed.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">If the machine were to
                    print G, it would lie. And the machine does not lie.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Therefore G is
                    unprintable.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">But this is what G
                    says.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">So we have established
                    the truth of G and proved the Theorem.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">6. Examine this last
                    paragraph 5. The Machine is like an organism with a
                    limitation. This limitation goes through the
                    semantics of reference. ~PRX refers to XX and so can
                    refer to itself if we take X = ~PR. ~PX refers to X
                    and cannot refer to itself since it is longer than
                    X. In biological coding the DNA code is
                    fundamentally smaller or equal to the structure to
                    which it refers.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Thus the
                    self-reproduction of the DNA is possible since DNA =
                    W+C the convention of the Watson and Crick strand
                    and each of W and C can by themselves engage in an
                    action to encode, refer to, the other strand. W can
                    produce a copy of C in the form W+C and C can
                    produce a copy of W in the form W+C each by using
                    the larger environment. Thus W+C refers to itself,
                    reproduces itself by a method of encoding quite
                    similar to the self reference of the Smullyan
                    Machine.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">7. Von Neuman devised a
                    machine that can build itself. B is the von Neuman
                    machine and B.x —> X,x where x is the plan or
                    blueprint or code for and entity X. B builds X with
                    given the blueprint x.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Then we have B,b —>
                    B,b where b is the blueprint for B. B builds itself
                    from its own blueprint. I hope you see the analogy
                    with the Goedel code.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">8. I will stop here.
                    The relationships with biology are very worth
                    discussing.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Before stopping it is
                    worth remarking that the Maturana Uribe Varela
                    autopoeisis is an example of a system arising into a
                    form of self-reference that has a lifetime due to
                    the probabilisitic dynamics of its process.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Very best,<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Lou Kauffman<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">_______________________________________________<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Fis mailing list<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"><a href="mailto:Fis@listas.unizar.es" style="color:blue;text-decoration:underline" target="_blank">Fis@listas.unizar.es</a><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"><a href="https://urldefense.com/v3/__https://linkprotect.cudasvc.com/url?a=http*3a*2f*2flistas.unizar.es*2fcgi-bin*2fmailman*2flistinfo*2ffis&c=E,1,1A1lgz03IPLQ2hs74kfiKoMaeMUB45427CkA4or9aZPmd25ZxHPE88KK0k9wHh7-Un8A9g25n5WMXHIu8yhAyMhiouezvcso3GGs3inouA,,&typo=1__;JSUlJSUlJQ!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5Qxv-rjz0s$" style="color:blue;text-decoration:underline" target="_blank">https://linkprotect.cudasvc.com/url?a=http%3a%2f%2flistas.unizar.es%2fcgi-bin%2fmailman%2flistinfo%2ffis&c=E,1,1A1lgz03IPLQ2hs74kfiKoMaeMUB45427CkA4or9aZPmd25ZxHPE88KK0k9wHh7-Un8A9g25n5WMXHIu8yhAyMhiouezvcso3GGs3inouA,,&typo=1</a><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">----------<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">INFORMACIN SOBRE
                    PROTECCIN DE DATOS DE CARCTER PERSONAL<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"> <u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Ud. recibe este correo
                    por pertenecer a una lista de correo gestionada por
                    la Universidad de Zaragoza.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Puede encontrar toda la
                    informacin sobre como tratamos sus datos en el
                    siguiente enlace:<a href="https://urldefense.com/v3/__https://linkprotect.cudasvc.com/url?a=https*3a*2f*2fsicuz.unizar.es*2finformacion-sobre-proteccion-de-datos-de-caracter-personal-en-listas&c=E,1,fozeJ_L1c5tT22-_XAnl69C5WGhrrENGO-y2mO0uH3X4Bbm3EnwS5CaEussDHCR05GDKiVPAM9G4jQaY0kVhqsc4vdv55TdLJ2956rnsNTuETjVx&typo=1__;JSUlJQ!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5Qxs3_Bh89$" style="color:blue;text-decoration:underline" target="_blank">https://linkprotect.cudasvc.com/url?a=https%3a%2f%2fsicuz.unizar.es%2finformacion-sobre-proteccion-de-datos-de-caracter-personal-en-listas&c=E,1,fozeJ_L1c5tT22-_XAnl69C5WGhrrENGO-y2mO0uH3X4Bbm3EnwS5CaEussDHCR05GDKiVPAM9G4jQaY0kVhqsc4vdv55TdLJ2956rnsNTuETjVx&typo=1</a><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">Recuerde que si est
                    suscrito a una lista voluntaria Ud. puede darse de
                    baja desde la propia aplicacin en el momento en que
                    lo desee.<u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif"><a href="https://urldefense.com/v3/__https://linkprotect.cudasvc.com/url?a=http*3a*2f*2flistas.unizar.es&c=E,1,3TvXH92hrTfzt-a8xmVthnhgYDIEoQe6-G0P6rC6QRkjfvtNsCmkhdLTIB3yp7fRPc9B_8iQu5fWOkBGz-j3blB0p3sUtmf6XMK2hwJsC8gB1kGLD5vipYwnBGfi&typo=1__;JSUl!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5Qxk6VF3YQ$" style="color:blue;text-decoration:underline" target="_blank">https://linkprotect.cudasvc.com/url?a=http%3a%2f%2flistas.unizar.es&c=E,1,3TvXH92hrTfzt-a8xmVthnhgYDIEoQe6-G0P6rC6QRkjfvtNsCmkhdLTIB3yp7fRPc9B_8iQu5fWOkBGz-j3blB0p3sUtmf6XMK2hwJsC8gB1kGLD5vipYwnBGfi&typo=1</a><u></u><u></u></div>
                  <div style="margin:0cm;font-size:10pt;font-family:Arial,sans-serif">----------<u></u><u></u></div>
                </blockquote>
                <p><u></u> <u></u></p>
                <div id="m_3057625756610017441DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2">
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span> </span></div>
                  <table style="border-style:solid none none;border-top-color:rgb(211,212,222);border-top-width:1pt" cellpadding="0" border="1">
                    <tbody>
                      <tr>
                        <td style="width:41.25pt;border:none;padding:9.75pt 0.75pt 0.75pt" width="55">
                          <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><a href="https://urldefense.com/v3/__https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient__;!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5QxjVd0Xyf$" style="color:blue;text-decoration:underline" target="_blank"><span style="border:1pt solid windowtext;padding:0cm;text-decoration:none"><span id="m_3057625756610017441cid:~WRD0001.jpg"><~WRD0001.jpg></span></span></a><span><u></u><u></u></span></div>
                        </td>
                        <td style="width:352.5pt;border:none;padding:9pt 0.75pt 0.75pt" width="470">
                          <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif;line-height:13.5pt"><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(65,66,78)">Libre de virus.</span><a href="https://urldefense.com/v3/__https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient__;!!D9dNQwwGXtA!VWC9LTBHaSxeymx-5r0eHWMMDBrit4Ck9S5Tu7GLMTvgKzDwM0EGmZ214tQBczdWL4qaYl5QxjVd0Xyf$" style="color:blue;text-decoration:underline" target="_blank"><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(68,83,234)">www.avast.com</span></a><span style="font-size:10pt;font-family:Arial,sans-serif;color:rgb(65,66,78)"><u></u><u></u></span></div>
                        </td>
                      </tr>
                    </tbody>
                  </table>
                  <div style="margin:0cm;font-size:11pt;font-family:Calibri,sans-serif"><span> </span></div>
                </div>
              </div>
            </div>
          </blockquote>
        </div>
        <br>
      </div>
    </blockquote>
    <br>
  </div>

</blockquote></div>