<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html lang="de" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title></title><style type="text/css">html,body{background-color:#fff;color:#333;line-height:1.4;font-family:sans-serif,Arial,Verdana,Trebuchet MS;}</style></head><body><p>Dear Jerry,</p>
<p>very interesting contribution, I thank you! Regarding your comment considering the (overestimated) success of Shannon communication information, I totally agree with every one of your arguments. It is hard to keep all scopes one is following in mind when doing pure higher mathematics already. Nevertheless, as a scientist one might be lucky to have the unmentioned but essential back-knowledge about scopes and axioms in one´s head to follow the logics in equations. But when the scope is not the scope of the observer and the logic of goal direction is not as obvious as in (human) communication, it is dangerous to interpret “information entropy” in a purely numerical sense. Maybe the boundedness of scale at least might come along with relations between code-elements given by their contextual environments (including topology), as soon as mathematics or physics found a way to better implement it? Could it be that Karl´s work might help us here?</p>
<p>Information quantification is a fascinating (future) topic, but first please allow me to take on your arguments regarding the status of matter. </p>
<p>As a Biologist I did some Biochemistry myself and so long before I joined the Information Science community, I would have not doubted your arguments about the chemical table of elements and the huge body of empirical knowledge on reactivity and compositions being enough to clarify the state of atomic matter. The problem I see now in Information Science which kept me awake nights long already, is whether our theory gives us arguments handling phase changes and material stability.</p>
<p>“Does not the theory of wave mechanics emanate from the physics of atoms and composites?” This really, really was unusual for me to read, but on one side, you are right: wave mechanics in water, where it was discovered, is of course happening in a medium of molecules. On the other hand: First we know that the electromagnetic vacuum also serves as a medium and second, what about standing waves as the underlying nature of orbitals? I would propose to complement the above statement : <em>(...)</em> <em>emanate from the physics of atoms, their components and composites.</em> Schrödinger read the thesis of de Broglie and developed his wave equation for describing a spatially constrained wave to arrive at the nucleus-electron distance needed by the Bohr model of hydrogen. Shortly before him, Heisenberg found the values with his matrix mechanics and a purely statistical interpretation in a positivistic model. The Copenhagen interpretation of QM silenced the standing wave hypothesis, giving alternatives like deBroglie-Bohm pilot wave interpretation a tough time for decades. Following Copenhagen, there is a wave equation just as a tool for statistical mechanics, but when information theory asks for differences which make differences, my question is: How can actions on statistical distribution be stored in a system when descriptions of the system always start with a Gaussian wave and add derivations as pure numerical parameters?</p>
<p>“(…) the conviction of many chemists that qualitative awareness of orbital shapes and mixing patterns (17) (rather than, for example, details of individual kinetic and potential energy contributions) provides the most important insight in understanding and predicting chemical phenomena (Weinhold, Journal of Chemical Education • Vol. 76 No. 8 August 1999).”</p>
<p>As long as the connection to the physics of stability (Lagrangian, Hamilton´s Principle) is not clarified, statements like the one above unintendedly increase confusion (at least in my understanding of matter). When another type of field (Higgs field) is necessary to explain mass in matter, how is the contact to this field depending on what is going on inside an atom or depending on in which state an atom´s bound electrons are? Avoiding thoughts about "hidden variables" all the time is becoming really tough in the study of information...</p>
<p>Kind regards,</p>
<p>Annette</p></body></html>