<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
<div class="moz-cite-prefix">Dear Jerry and FIS Colleagues,<br>
<br>
Thanks for the thoughtful comments and the Landauer's abstract.
Apart of those three principles already mentioned (that Stan
expanded some days ago) perhaps we could reinterpret in that light
(agent's inaccessibility) many of the quantum conundrums: two
slits experiments, decoherence of the wave function, measurement
and instantaneous collapse of the wave function, entanglement of
coherent/decoherent processes ("spooky action at a distance"), and
so on. Even the Second Law of thermodynamics could be
reinterpreted from the agent's impossibilities point of view
("thou cannot process the same piece of information twice"). My
contention is that our present approaches to information are still
rudimentary and do not allow an informational cosmovision to
complement (and not to try to supplant) the physicalist
cosmovision. It won't happen if we do not previously solve the
biggest conundrum in my view, <u>How "immaterial" laws of nature
can occupy space-time at every corner or granularity and
interact with "material" elements (particles, forces, fields),
given that they lack even the slightly trace of physicality?</u>
In other words: Where are the Laws? How can they "act"? Maybe this
response could be framed only in informational terms (????).<br>
<br>
About Landauer, my interpretation is that as long as the (quantum)
computation is kept in a coherent state, I mean, without measuring
or observing or deleting its processes, it will be reversible at
zero cost. This is quantum reversibility. If I am not wrong this
paper was one of the founding works of quantum computing. Does it
relate to the chemical reaction you describe below? Good question.<br>
<br>
That reaction, I think, is completely a "classical" phenomenon
(well, except maybe the activation barrier energy, terribly low in
this case) . All the participant atoms are in a bath of
thermalizing photons that do not allow any maintenance of
coherence or any emergence of quantum spooky effects. You speak
about creation of information, yes, but at the same time there is
disappearance of information. Three atoms enter, that are
"deleted" along the reaction, and two new ones appear, that are
"created". So, in terms of entropy there is a net decrease, but it
is overcompensated by the enormous Q generated due to the
differences in internal energies or enthalpies. The enormous value
of heat formation you point out. I think Gibbs free energy is very
clear about that.<br>
<br>
I will appreciate if you or other FIS parties try to bite the
bullet above about the laws of nature...<br>
<br>
Best wishes--Pedro<br>
<br>
El 05/03/2019 a las 22:58, Jerry LR Chandler escribió:<br>
</div>
<blockquote type="cite"
cite="mid:B81F8D69-3A19-4C40-AABC-44F71F9B82DE@icloud.com">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Pedro, List:
<div class=""><br class="">
</div>
<div class="">The original post on limits was truly novel to me.
Have you references to other sorts of binding / blinding limits
to scientific theories?</div>
<div class=""><br class="">
</div>
<div class="">One sort-of counter-example came to mind. It is a
component of the tensions between physical and chemical logics.</div>
<div class="">It is based on foundational physical principles that
could possibly be associated with the foundational physical
conceptualization of information. Or mis-conceptualization? The
starting point for the conundrum is Landauer’s famous abstract.</div>
<div class=""><br class="">
</div>
<div class="">
<div class="sectionInfo abstractSectionHeading"
style="font-family: Lora, serif; font-size: 20px;">
<div class="sectionHeading" id="fragmentNav_0"
style="font-weight: bold; font-family: Montserrat,
sans-serif; margin-bottom: 10px; margin-top: 0px;
text-transform: uppercase; padding-top: 0px;">ABSTRACT (by
Landauer)</div>
</div>
<div class="NLM_paragraph" style="margin-bottom: 13px;
font-family: Lora, serif; font-size: 20px;">Thermodynamics
arose in the 19th century out of the attempt to understand the
performance limits of steam engines in a way that would
anticipate all further inventions. Claude Shannon, after World
War II, analyzed the limits of the communications channel. It
is no surprise, then, that shortly after the emergence of
modern digital computing, similar questions appeared in that
field. It was not hard to associate a <named-content
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:ali="http://www.niso.org/schemas/ali/1.0/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:oasis="http://www.niso.org/standards/z39-96/ns/oasis-exchange/table"
content-type="sem:AIPTh1.2" rid="kwd1.1" class="">logic gate</named-content> with
a degree of freedom, then to associate <i class="">kT</i> with
that, and presume that this energy has to be dissipated at
every step. Similarly, it seemed obvious to many that the <named-content
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:ali="http://www.niso.org/schemas/ali/1.0/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:oasis="http://www.niso.org/standards/z39-96/ns/oasis-exchange/table"
content-type="sem:AIPTh1.2" rid="kwd1.2" class="">uncertainty
principle,</named-content> <span class="equationTd
inline-formula"><span class="MathJax"
id="MathJax-Element-1-Frame" tabindex="0"
data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"
overflow="scroll"
altimg="eq-00001.gif"><mi>ΔEΔt∼ℏ,</mi></math>"
role="presentation" style="display: inline; line-height:
normal; word-spacing: normal; word-wrap: normal;
white-space: nowrap; float: none; direction: ltr;
max-width: none; max-height: none; min-width: 0px;
min-height: 0px; border: 0px; padding: 0px; margin: 0px;
position: relative;"><nobr aria-hidden="true"
style="transition: none; -webkit-transition: none;
border: 0px; padding: 0px; margin: 0px; max-width:
5000em; max-height: 5000em; min-width: 0px; min-height:
0px; vertical-align: 0px; line-height: normal;" class=""><span
class="math" id="MathJax-Span-1" overflow="scroll"
style="transition: none; -webkit-transition: none;
display: inline-block; position: static; border: 0px;
padding: 0px; margin: 0px; vertical-align: 0px;
line-height: normal; width: 4.089em;"><span
style="transition: none; -webkit-transition: none;
display: inline-block; position: relative; border:
0px; padding: 0px; margin: 0px; vertical-align: 0px;
line-height: normal; width: 3.897em; height: 0px;
font-size: 20.799999237060547px;" class=""><span
style="transition: none; -webkit-transition: none;
position: absolute; border: 0px; padding: 0px;
margin: 0px; vertical-align: 0px; line-height:
normal; clip: rect(1.733em, 1003.849em, 2.839em,
-999.998em); top: -2.546em; left: 0em;" class=""><span
class="mrow" id="MathJax-Span-2"
style="transition: none; -webkit-transition:
none; display: inline; position: static; border:
0px; padding: 0px; margin: 0px; vertical-align:
0px; line-height: normal;"><span class="mi"
id="MathJax-Span-3" style="transition: none;
-webkit-transition: none; display: inline;
position: static; border: 0px; padding: 0px;
margin: 0px; vertical-align: 0px; line-height:
normal; font-family: STIXGeneral-Regular;">ΔEΔt∼ℏ,</span></span><span
style="transition: none; -webkit-transition:
none; display: inline-block; position: static;
border: 0px; padding: 0px; margin: 0px;
vertical-align: 0px; line-height: normal; width:
0px; height: 2.55em;" class=""></span></span></span><span
style="transition: none; -webkit-transition: none;
display: inline-block; position: static;
border-width: 0px; border-left-style: solid;
padding: 0px; margin: 0px; vertical-align: -0.198em;
line-height: normal; overflow: hidden; width: 0px;
height: 0.953em;" class=""></span></span></nobr><span
class="MJX_Assistive_MathML" role="presentation"
style="top: 0px; left: 0px; clip: rect(1px, 1px, 1px,
1px); -webkit-user-select: none; position: static;
padding: 0px; border: 0px; display: inline; transition:
none; -webkit-transition: none; margin: 0px;
vertical-align: 0px; line-height: normal; height: 1px
!important; width: 1px !important; overflow: hidden
!important;"><math
xmlns="http://www.w3.org/1998/Math/MathML"
overflow="scroll" altimg="eq-00001.gif"><mi>ΔEΔt∼ℏ,</mi></math></span></span></span><span
class="formulaLabel"></span> could be used to calculate a
required minimal energy involvement, and therefore <named-content
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:ali="http://www.niso.org/schemas/ali/1.0/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:oasis="http://www.niso.org/standards/z39-96/ns/oasis-exchange/table"
content-type="sem:AIPTh1.2" rid="kwd1.3" class="">energy
loss,</named-content> for very short <span class="equationTd
inline-formula"><span class="MathJax"
id="MathJax-Element-2-Frame" tabindex="0"
data-mathml="<math
xmlns="http://www.w3.org/1998/Math/MathML"
overflow="scroll"
altimg="eq-00002.gif"><mi>Δt.</mi></math>"
role="presentation" style="display: inline; line-height:
normal; word-spacing: normal; word-wrap: normal;
white-space: nowrap; float: none; direction: ltr;
max-width: none; max-height: none; min-width: 0px;
min-height: 0px; border: 0px; padding: 0px; margin: 0px;
position: relative;"><nobr aria-hidden="true"
style="transition: none; -webkit-transition: none;
border: 0px; padding: 0px; margin: 0px; max-width:
5000em; max-height: 5000em; min-width: 0px; min-height:
0px; vertical-align: 0px; line-height: normal;" class=""><span
class="math" id="MathJax-Span-4" overflow="scroll"
style="transition: none; -webkit-transition: none;
display: inline-block; position: static; border: 0px;
padding: 0px; margin: 0px; vertical-align: 0px;
line-height: normal; width: 1.349em;"><span
style="transition: none; -webkit-transition: none;
display: inline-block; position: relative; border:
0px; padding: 0px; margin: 0px; vertical-align: 0px;
line-height: normal; width: 1.3em; height: 0px;
font-size: 20.799999237060547px;" class=""><span
style="transition: none; -webkit-transition: none;
position: absolute; border: 0px; padding: 0px;
margin: 0px; vertical-align: 0px; line-height:
normal; clip: rect(1.733em, 1001.252em, 2.695em,
-999.998em); top: -2.546em; left: 0em;" class=""><span
class="mrow" id="MathJax-Span-5"
style="transition: none; -webkit-transition:
none; display: inline; position: static; border:
0px; padding: 0px; margin: 0px; vertical-align:
0px; line-height: normal;"><span class="mi"
id="MathJax-Span-6" style="transition: none;
-webkit-transition: none; display: inline;
position: static; border: 0px; padding: 0px;
margin: 0px; vertical-align: 0px; line-height:
normal; font-family: STIXGeneral-Regular;">Δt.</span></span><span
style="transition: none; -webkit-transition:
none; display: inline-block; position: static;
border: 0px; padding: 0px; margin: 0px;
vertical-align: 0px; line-height: normal; width:
0px; height: 2.55em;" class=""></span></span></span><span
style="transition: none; -webkit-transition: none;
display: inline-block; position: static;
border-width: 0px; border-left-style: solid;
padding: 0px; margin: 0px; vertical-align: -0.048em;
line-height: normal; overflow: hidden; width: 0px;
height: 0.802em;" class=""></span></span></nobr><span
class="MJX_Assistive_MathML" role="presentation"
style="top: 0px; left: 0px; clip: rect(1px, 1px, 1px,
1px); -webkit-user-select: none; position: static;
padding: 0px; border: 0px; display: inline; transition:
none; -webkit-transition: none; margin: 0px;
vertical-align: 0px; line-height: normal; height: 1px
!important; width: 1px !important; overflow: hidden
!important;"><math
xmlns="http://www.w3.org/1998/Math/MathML"
overflow="scroll" altimg="eq-00002.gif"><mi>Δt.</mi></math></span></span></span><span
class="formulaLabel"></span></div>
<div class="NLM_paragraph" style="margin-bottom: 13px;
font-family: Lora, serif; font-size: 20px;">There are no
unavoidable energy consumption requirements per step in a
computer. Related analysis has provided insights into the
measurement process and the communication schannel, and has
prompted speculations about the nature of physical laws.</div>
</div>
<div class=""><br class="">
</div>
<div style="font-size: 17px;" class="">Chemical example:</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">Consider the reaction 2 H2
+ O2 ——> 2 H2O.</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">During this reaction, vast
amounts of new information is created as all of particles are in
new quantum states and generate quanta spectra that are
different from the precursors.</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">Yet, the reaction releases
energy. A huge of energy! (Think Hindenburg!)</div>
<div style="font-size: 17px;" class=""> (gas)</div>
<div style="font-size: 17px;" class="">A web sources gives the
value of the heat of formation of water(gas) from its elements
as - 241.8 kJ/mole.</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">Does this example of an
actual physical measurement of a process that CREATES new
information confirm or deny the Landauer hypothesis?</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">How is either a confirmed
or denial related to Landauer's or any other physical argument?</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">Have fun with this
conundrum!</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">Cheers</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class="">Jerry</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div style="font-size: 17px;" class=""><br class="">
</div>
<div class=""><br class="">
<div>
<blockquote type="cite" class="">
<div class="">On Mar 1, 2019, at 7:23 AM, Pedro C. Marijuan
<<a href="mailto:pcmarijuan.iacs@aragon.es" class=""
moz-do-not-send="true">pcmarijuan.iacs@aragon.es</a>>
wrote:</div>
<br class="Apple-interchange-newline">
<div class="">
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" class="">
<div text="#000000" bgcolor="#FFFFFF" class="">
<div class="moz-cite-prefix">Dear All,<br class="">
<br class="">
Thanks to Jerry, Stan, and Bruno for their responses.<br
class="">
There is a recent publication on "Agent
Inaccessibility as a Fundamental Principle in Quantum
Mechanics" by Jan Waleczek (Entropy, 2019, 21/1),
pointed out by courtesy of Malcolm Dean, that captures
very well the deep sense of this discussion. The
subtitle is: "Objective Unpredictability ad Formal
Uncomputability." It is open access. Rather than the
triumph of indeterminism with the quantum revolution,
the paper states that it is only valid to claim the
following: <i class="">the quantum revolution means
the profound discovery of an agent-inaccesible
regime of the physical universe. </i><br class="">
And if we think about all the problems and paradoxes
surrounding research on consciousness, Do they relate
to this very inaccessibility? Many parties have tried
to connect consciousness "explanation" with the
quantum. Rather unsuccessfully, at least at the time
being. But the point I see is, Could the Limit of
quantum inaccessibility to the external world of the
agent be germane, or even the same Limit, than the
inaccessibility to its own internal world? <br
class="">
In my view, this does not imply a negationist stance
concerning the integrity of the whole scientific
enterprise or information science in particular.
Precisely, the universalistic, open-ended nature of
our human openness to information derives from
consciousness, language, and the empirical congruence
perception/action in a collaborative social framework.
Because of this universal openness to information we
can organize universalistic sciences (physics, maths,
logics/comp., info science) and many other
particularistic ones, depending on the further limits
or principles we establish--as Jerry remarks below. <br
class="">
Should the universal openness to information,
subtended by the inaccessibility limit(s) of quantum
and consciousness, be considered as a sort of
Information Zeroth Principle?<br class="">
<br class="">
Best wishes<br class="">
--Pedro<br class="">
PS. I have just seen entering the new message from
Karl...<br class="">
<br class="">
<br>
</div>
</div>
</div>
</blockquote>
</div>
</div>
</blockquote>
<p><br>
</p>
<pre class="moz-signature" cols="72">--
-------------------------------------------------
Pedro C. Marijuán
Grupo de Bioinformación / Bioinformation Group
<a class="moz-txt-link-abbreviated" href="mailto:pcmarijuan.iacs@aragon.es">pcmarijuan.iacs@aragon.es</a>
<a class="moz-txt-link-freetext" href="http://sites.google.com/site/pedrocmarijuan/">http://sites.google.com/site/pedrocmarijuan/</a>
------------------------------------------------- </pre>
<div id="DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2"><br /> <table style="border-top: 1px solid #D3D4DE;">
<tr>
<td style="width: 55px; padding-top: 18px;"><a href="https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient" target="_blank"><img src="https://ipmcdn.avast.com/images/icons/icon-envelope-tick-round-orange-animated-no-repeat-v1.gif" alt="" width="46" height="29" style="width: 46px; height: 29px;" /></a></td>
<td style="width: 470px; padding-top: 17px; color: #41424e; font-size: 13px; font-family: Arial, Helvetica, sans-serif; line-height: 18px;">Libre de virus. <a href="https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient" target="_blank" style="color: #4453ea;">www.avast.com</a> </td>
</tr>
</table>
<a href="#DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2" width="1" height="1"> </a></div></body>
</html>