<div dir="ltr">Caro J. L. Perez Velazquez,<div>grazie per questa problematica e specialistica introduzione che mi riservo di meditare meglio nel prosieguo della discussione.</div><div>Qui intanto, in modo schematico, mi permetto da economista di fare le seguenti considerazioni. </div><div>Bisogna considerare e distinguere:</div><div>* coscienza fisio-bio-logica (a), coscienza psicologica (b), comportamentale correntemente intesa come</div><div> consapevolezza di sé (c), sistema di valori morali ed etici (d), coscienza sociale o politica (e), etc., tutte comprensibili</div><div> in base ai fondamenti onto-bio-logici della conoscenza;</div><div>* entropia o informazione in senso statistico-matematico quale misura dell'equiprobabilità di una distribuzione statistica </div><div>uniforme alla fonte (a), termodinamica legata all'equilibrio molecolare o degradazione energetica (b), in funzione della </div><div>teoria o pratica della comunicazione richiedente un codice interpretativo-significativo e significante (c), etc.</div><div>Per non parlare:</div><div>* dell'informazione della neg-entropia o energia libera di E. Schrodinger, assunta dall'ambiente per mantenere la vita (a);</div><div>* delle strutture dissipative di Ilya Prigogine che creano ordine (neg-entropico) dal disordine (entropico) mediante fluttuazioni, etc.</div><div>Nella Nuova economia che ho elaborato la coscienza e l'entropia hanno un ruolo fondamentale, ma inquadrabile in un contesto</div><div>più ampio sia in senso sostanziale e formale, concettuale e terminologico o linguistico.</div><div>Non pretendo di avere ragione di niente e sono sempre pronto ad onorare la ragione degli altri .D'altra parte, senza l'accettazione</div><div>reciproca degli uni e degli altri non v'ha amore della conoscenza o conoscenza dell'amore.</div><div>Grazie ancora e auguri.</div><div>Francesco</div></div><br><div class="gmail_quote"><div dir="ltr">Il giorno ven 4 gen 2019 alle ore 14:41 jose luis perez velazquez <<a href="mailto:jlpvjlpv@gmail.com">jlpvjlpv@gmail.com</a>> ha scritto:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><b><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">Towards
a statistical mechanics of cognition: </span></b><b><span style="font-size:12pt;font-family:"Times New Roman",serif">Consciousness as a global property of brain dynamic
activity </span></b></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif">As a new year’s lecture, we present our recent work
that seeks general principles of the organization of the cellular collective
activity in the brain associated with conscious awareness. Our purpose is</span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> to
identify features of brain organization that are optimal for sensory
processing, and that may guide the emergence of cognition and consciousness. We
follow the thermodynamic approach: find a state functional which reflects the nature
of the states attained by the system and that is influenced by some observables.
Considering what is known about how the nervous system functions ―and that brain
activity is described from EEG, MEG or functional neuroimaging as a
superposition of dynamics at different time scales― the “nature of brain states”
consists of patterns of coordinated activity, that is, correlations of cellular
(neuronal) activity normally measured as coherence or synchrony, hence neural
synchronization is a fundamental observable and constitutes an appropriate
metric to characterise nervous system dynamics.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> We also follow the classic approach in physics
when it comes to understanding collective behaviours of systems composed of a
myriad of units: the assessment of the number of possible configurations, or
microstates, that the system can adopt.
In our study we focus on the collective level of description and assume
that coordinated patterns of brain activity evolve due to interactions of
mesoscopic areas. Thus we use several types of brain recordings (intracerebral
EEG, scalp EEG and MEG) reflecting the mesoscale level to inspect not only
superficial cortical activity but also that of deeper structures in conscious
and unconscious states, and calculate the number of “connections” between these
areas and the associated entropy and complexity.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif">The methods are detailed in Guevara Erra et al. (2016)
and Mateos et al. (2017). Suffice to say that we compute a phase synchrony
index from two brain signals (corresponding to two brain areas) and declare the
areas “connected” if the index is higher than the average synchrony obtained
from surrogates, and “disconnected” if the index is lower. </span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> It must be noted that, while normally
neuroscientists use the words synchrony and connectivity as synonymous, in
reality phase synchrony analysis reveals only a correlation between the phases
of the oscillations between two signals, and not a real connectivity which
depends on several other factors</span><span style="font-size:12pt;font-family:"Times New Roman",serif">; this is an
important topic but we have no space to discuss it here (some of these
consideration are expounded in some chapters in ‘</span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">The
Brain-Behaviour Continuum―The subtle transition between sanity and insanity’ (</span><span style="font-size:12pt;font-family:"Times New Roman",serif">Perez Velazquez and Frantseva, 2011).</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">Hence,
the number of “connected” brain networks is determined from the recordings in
the distinct states: conscious (awake) and unconscious (sleep −slow wave and
REM―, coma and epileptic seizures), and the whole collection of connected and
not connected networks constitutes our macrostate of the brain. </span><span style="font-size:12pt;font-family:"Times New Roman",serif">An entropy value was then computed for the number of possible
configurations of connected brain networks. </span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">The entropy of
this macrostate is given by the logarithm of the number of combinations.</span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> </span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">We found a surprisingly simple result:
normal wakeful states are characterised by the greatest number of possible
configurations of interactions between brain networks, representing highest
entropy values. Unconscious states have lower number of configurations, that
is, lower entropy. Therefore, the information content is larger in the network
associated to conscious states, suggesting that consciousness could be the result
of an optimization of information processing. This result is not too
surprising, for, as </span><span style="font-size:12pt;font-family:"Times New Roman",serif">Shinbrot and Muzio (Nature 410:251-258, 2001) already
said, Nature chooses states that maximize the number of particle rearrangements
(in our case it is the rearrangement of connected cell networks).</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif">The following schematic figure summarises the main
concept derived from the study.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<div><img src="cid:ii_jqi36vyq0" alt="image.png" width="390" height="173"><br></div><br>
<p class="MsoNormal" style="margin:0cm 0.2pt 0.0001pt 0cm;text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"> </span></p>
<p class="MsoNormal" style="margin:0cm 0.2pt 0.0001pt 0cm;text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">The figure </span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">represents the proposed
general scheme of the relation between global brain connectivity and
behavioural states. Normal alertness resides at the top of the curve
representing the number of configurations of connections the system can adopt,
or the associated entropy. The maximisation of the configurations (microstates)
provides the variability in brain activity needed for normal sensorimotor
action. Abnormal, or unconscious states like sleep, are located farther from
the top, and are characterised by either large (e.g. in epileptic seizures) or
small number of “connected” networks therefore exhibiting lower number of
microstates (hence lower entropy) that are not optimal for sensorimotor processing.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">However,
the entropy thus computed, as explained in the two aforementioned papers,
represents a global measure of the organization of brain cell ensembles, hence,
at the macroscale level. Therefore, next we examined activity at the lower
level, namely the variability in the connections between brain networks; let’s
call this the “microscopic” level (although we are still working with signals
that represent the macroscopic scale, do not get confused!). </span><span style="font-size:12pt;font-family:"Times New Roman",serif">Having found maximal entropy in conscious states, the microscopic nature
of the configurations of connections was evaluated using an adequate complexity
measure derived from the Lempel-Ziv complexity, the Joint Lempel-Ziv Complexity
(JLZC). This method allows for the assessment of the variability at short time
scales of the configurations of connected networks: the establishment and
dissolution of “connections” (for details of this study, please see Mateos et
al., 2017). Higher complexity was found in states characterised not only by
conscious awareness but also by subconscious cognitive processing, such as
during sleep stages, where it is known there is information processing and not
only during REM episodes (dreaming) but also during slow wave sleep (</span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">Stickgold,
2001)</span><span style="font-size:12pt;font-family:"Times New Roman",serif">. Thus, even in moments of global unconsciousness
there can be substantial processing, which is revealed upon a closer scrutiny
at the microscale level, as that provided by the JLZC. </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif">The results provide evidence for the notion that
ongoing transformations of information in the brain are reflected in the
variability and fluctuations in the functional connections among brain cell
ensembles (large entropy of the number of possible configurations and
concomitant large complexity in the variability of the configurations of the
connections), which manifest in aspects of consciousness. The crucial aspect
for a healthy brain dynamics then is not to reach maximum number of units
(neurons or networks) interacting, but rather the largest possible number of
configurations (allowed by the constraints). As such, the result of high global
entropy at the macro level and concomitant high JLZC supports the global nature
of conscious awareness, because even though there is high JLZC in some unconscious
states, the macroscopic entropy is low in these states; therefore, conscious
awareness needs high global entropy, whereas the high complexity in some
unconscious states like sleep reflects information processing but does not
reach “awareness”. On the other hand, we found that in pathological unconscious
states like seizures or coma both the global entropy and the JLZC are low. In
these pathological states, unlike during sleep, there is almost no information
processing.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif">The global
nature of consciousness is advocated by several theories of cognition. In fact,
we think our</span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">
findings encapsulate three main current theories of cognition, as discussed in
the papers, namely, the Global Workspace Theory, the Information Integrated Theory,
and the notion of metastability of brain states. It is well known that neurophysiological
recordings of brain activity demonstrate fluctuating patterns of cellular
interactions, variability that allows for a wide range of states or
configurations of connections of distributed networks exchanging information, that
support the flexibility needed to process sensory inputs and execute motor
actions. Recent years have seen a surge in the study of fluctuations in brain
coordinated activity, studies that have raised conceptual frameworks such as
that of metastable dynamics and that have motivated interest in the practical
application of assessments of nervous system variability for clinical purposes.
Of course the prominent question is how to describe the organising principles
of this cellular collective activity which allow features associated with
consciousness to emerge. This is the objective of our work.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">In
conclusion, and as </span><span style="font-size:12pt;font-family:"Times New Roman",serif">an extension of previous work [Perez Velazquez, 2009] where
it was proposed that a general organizing principle of natural phenomena is the
tendency toward maximal —more probable— distribution of energy, we venture that
the brain organization optimal for conscious awareness will be a manifestation
of the tendency towards a widespread distribution of energy (or, equivalently,
maximal information exchange). Whereas we do not directly deal with energy or
information in our work, as we focus on the number of (micro)states or
combinations of connected signals derived from specific types of
neurophysiological recordings, the results obtained are consistent with
conscious awareness being associated with widespread distribution of
“information” among brain cell ensembles.</span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">In
summary, these studies represent our preliminary attempt at finding organising
principles of brain function that will help to guide in a more formal sense
inquiry into how consciousness arises from the organization of matter. The
extension of this work that we are now carrying out includes a description of the
evolution equation of brain dynamics using a probabilistic framework incorporating
the probabilities of connections among brain cell networks. But this is a story
for a future talk! In the meantime,
buena suerte for the new year we just started… even though I don’t really
believe in luck but this is another story too, one about determinism and
stochasticity..<i></i></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;text-indent:36pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><b><span style="font-size:12pt;font-family:"Times New Roman",serif;text-transform:uppercase">References</span></b></p>
<p class="MsoNormal" style="text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif">R. Guevara Erra, D. M. Mateos, R. Wennberg, J.L. Perez Velazquez (2016) </span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">Statistical
mechanics of consciousness: Maximization of information content of network is
associated with conscious awareness. </span><i><span style="font-size:12pt;font-family:"Times New Roman",serif">Physical Review E</span></i><span style="font-size:12pt;font-family:"Times New Roman",serif">, </span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">94</span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">, 052402 </span><span style="font-size:12pt;font-family:"Times New Roman",serif"></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><b><span style="font-size:12pt;font-family:"Times New Roman",serif;text-transform:uppercase"> </span></b></p>
<p class="MsoNormal" style="text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif">D. M. Mateos, R. Wennberg, R. Guevara Erra, J. L. Perez Velazquez</span><span style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-GB">(2017) Consciousness as a global property of brain dynamic
activity.</span></span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> </span><i><span style="font-size:12pt;font-family:"Times New Roman",serif">Physical Review E,</span></i><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">96</span><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">,
062410 </span></p>
<p class="MsoNormal" style="text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="ES" style="font-size:12pt;font-family:"Times New Roman",serif">J.L. Perez Velazquez, M.V. Frantseva (2011). </span><i><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">The Brain-Behaviour Continuum ―The
subtle transition between sanity and insanity</span></i><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">. Imperial College Press/World Scientific </span></p>
<h1 style="margin:0cm 0cm 0.0001pt;text-align:justify;break-after:avoid;font-size:12pt;font-family:"Times New Roman",serif"><span lang="EN-US" style="font-weight:normal"> </span></h1>
<h1 style="margin:0cm 0cm 0.0001pt;text-align:justify;break-after:avoid;font-size:12pt;font-family:"Times New Roman",serif"><span style="font-weight:normal">J. L. Perez Velazquez</span><span style="font-weight:normal"> </span><span style="font-weight:normal">(2009) </span><span lang="EN-US" style="font-weight:normal">Finding
simplicity in complexity: general principles of biological and nonbiological
organization.</span><span lang="EN-US" style="font-weight:normal"> </span><i><span style="font-weight:normal">Journal of Biological Physics</span></i><span style="font-weight:normal">, 35, 209-221 </span></h1>
<p class="MsoNormal" style="text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p>
<p class="MsoNormal" style="text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif">R.
Stickgold (2001) Watching the sleeping brain watch us —Sensory processing
during sleep. <i>Trends in Neurosciences</i>
24, 307. </span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"> </span></p><p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;text-align:justify;line-height:normal;font-size:11pt;font-family:Calibri,sans-serif"><span lang="EN-GB" style="font-size:12pt;font-family:"Times New Roman",serif"><br></span></p></div>
_______________________________________________<br>
Fis mailing list<br>
<a href="mailto:Fis@listas.unizar.es" target="_blank">Fis@listas.unizar.es</a><br>
<a href="http://listas.unizar.es/cgi-bin/mailman/listinfo/fis" rel="noreferrer" target="_blank">http://listas.unizar.es/cgi-bin/mailman/listinfo/fis</a><br>
</blockquote></div>