<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:rgb(0,0,0); font-family:Calibri,Helvetica,sans-serif,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols">
<p style="margin-top:0; margin-bottom:0"></p>
<div>Hi FISers,</div>
<div><br>
</div>
<div>About 6 months ago, John Stuart Reid [1] of the Sonic Age Lab in Cumbria, England, published on-line a fascinating video strip showing the sound vibration-induced formation of standing waves in individual water droplets of 50 to 100 microns in size [1],
almost comparable to living cells, which is reproduced below (click the picture to activate the video). </div>
<div><br>
</div>
<div><a href="https://youtu.be/Z0St42jfgMU" class="OWAAutoLink" id="LPlnk365345" style="color:rgb(17,17,17); font-family:Roboto,Arial,sans-serif; font-size:14px; white-space:pre-wrap" previewremoved="true" tabindex="-1">https://youtu.be/Z0St42jfgMU</a>
<div id="LPBorder_GT_15278008010760.19026345504147524" style="color:rgb(17,17,17); font-family:Roboto,Arial,sans-serif; font-size:14px; white-space:pre-wrap; margin-bottom:20px; overflow:auto; width:100%; text-indent:0px">
<table id="LPContainer_15278008010720.5280635565172342" cellspacing="0" style="width:90%; background-color:rgb(255,255,255); overflow:auto; padding-top:20px; padding-bottom:20px; margin-top:20px; border-top:1px dotted rgb(200,200,200); border-bottom:1px dotted rgb(200,200,200)">
<tbody>
<tr valign="top" style="border-spacing:0px">
<td id="ImageCell_15278008010730.2796478354672953" colspan="1" style="width:250px; display:table-cell; padding-right:20px">
<div id="LPImageContainer_15278008010730.5147966702211555" style="background-color:rgb(255,255,255); height:187px; margin:auto; display:table; width:250px">
<a id="LPImageAnchor_15278008010730.6718221729680443" href="https://youtu.be/Z0St42jfgMU" target="_blank" style="display:table-cell; text-align:center" tabindex="-1"><img id="LPThumbnailImageID_15278008010730.064955327710293" width="250" height="187" style="display:inline-block; max-width:250px; max-height:250px; height:187px; width:250px; border-width:0px; vertical-align:bottom" src="https://i.ytimg.com/vi/Z0St42jfgMU/hqdefault.jpg"></a></div>
</td>
<td id="TextCell_15278008010740.9489677295769754" colspan="2" style="vertical-align: top; padding: 0px; display: table-cell; position: relative;">
<div id="LPRemovePreviewContainer_15278008010740.9171028163389756"><a id="LPlnk950502" class="ms-Icon--x ms-icon-font-size-14 OWAAutoLink" style="font-family:wf_segoe-ui_normal,"Segoe UI","Segoe WP",Tahoma,Arial,sans-serif; font-weight:normal; padding:8px; float:right; color:rgb(102,102,102); background-color:rgb(244,249,253); margin-left:10px" previewremoved="true" tabindex="-1"></a></div>
<div id="LPTitle_15278008010740.6905536986347751" style="top:0px; color:rgb(0,120,215); font-weight:400; font-size:21px; font-family:wf_segoe-ui_light,"Segoe UI Light","Segoe WP Light","Segoe UI","Segoe WP",Tahoma,Arial,sans-serif; line-height:21px">
<a id="LPUrlAnchor_15278008010740.3984032124898209" href="https://youtu.be/Z0St42jfgMU" target="_blank" style="text-decoration:none" tabindex="-1">Sessile drop experiment</a></div>
<div id="LPMetadata_15278008010740.7851700976686753" style="margin:10px 0px 16px; color:rgb(102,102,102); font-weight:400; font-family:wf_segoe-ui_normal,"Segoe UI","Segoe WP",Tahoma,Arial,sans-serif; font-size:14px; line-height:14px">
youtu.be</div>
<div id="LPDescription_15278008010750.49830351516899984" style="display:block; color:rgb(102,102,102); font-weight:400; font-family:wf_segoe-ui_normal,"Segoe UI","Segoe WP",Tahoma,Arial,sans-serif; font-size:14px; line-height:20px; max-height:100px; overflow:hidden">
In this short video we see a field of sessile drops, many of them in the 50 to 100 micron range, mimicking the mass of many types of human cell. The sound us...</div>
</td>
</tr>
</tbody>
</table>
</div>
<font color="#111111" face="Roboto, Arial, sans-serif"><span style="font-size:14px; white-space:pre-wrap">The standing waves formed within these small water droplets are the examples of the
</span></font><i style="color:rgb(17,17,17); font-family:Roboto,Arial,sans-serif; font-size:14px; white-space:pre-wrap">Faraday waves
</i><font color="#111111" face="Roboto, Arial, sans-serif"><span style="font-size:14px; white-space:pre-wrap">first reported
</span></font><font color="#111111" face="Roboto, Arial, sans-serif"><span style="font-size:14px; white-space:pre-wrap">in
</span></font><font color="#111111" face="Roboto, Arial, sans-serif"><span style="font-size:14px; white-space:pre-wrap">1831 [2]. In the following explanation, John invokes the
<span style="color:rgb(255,0,0)">resonance mechanism </span>to account for the differential effects of the same sound input on the wave patterns exhibited by differently sized sessle droplets, which I think is valid:
</span></font><br>
</div>
<div><span style="color:rgb(17,17,17); font-family:Roboto,Arial,sans-serif; font-size:14px; white-space:pre-wrap">"<span style="color: rgb(255, 0, 0);">In this short video we see a field of sessile drops, many of them in the 50 to 100 micron range, mimicking
the mass of many types of human cell. </span><span style="color: rgb(255, 0, 0);">The sound used to excite the drops is code 133 of Cyma Technologies AMI 1000 sound therapy device. The entire field is around 4
</span></span><span style="color:rgb(17,17,17); font-family:Roboto,Arial,sans-serif; font-size:14px; white-space:pre-wrap"><span style="color: rgb(255, 0, 0);">mm in width yet the uptake of acoustic energy is significantly different between the various sizes
of microscopic sessile drops, and at the point </span><span style="color: rgb(255, 0, 0);">of Faraday Instability only two droplets reach full expression, while in others there is a very reduced acoustic uptake. This suggests that resonance may play a major
role in the ability of cells to absorb acoustic energy</span>." </span><br>
</div>
<div><span style="font-size: 12pt;">The reason I am interested in the Faraday waves in sessile droplets is because I saw the link between these waves and the waves that I postulated to be induced by energy input in all the material systems in the Universe,
from atoms to enzymes, cells, brains, human societies, and to the Universe Itself, depending on the pattern of which the functions of a given system is thought to be determined [3, 4]. This idea is schematically represented in</span><b style="font-size: 12pt;">
Figure 1 </b><span style="font-size: 12pt;">reproduced from [3, 4]:</span><br>
</div>
<div><br>
</div>
<div><img naturalheight="447" naturalwidth="613" size="43825" id="img907405" style="max-width: 99.9%; user-select: none;" tabindex="-1" src="cid:3ba4a188-c858-4818-ab73-4e0a020409e5"><br>
</div>
<div><span style="font-size:12pt; line-height:106%; font-family:"Times New Roman",serif"><b>Figure 1</b><b>.
</b></span><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif">One possibility to account for the<b>
</b>universality of the Planckian distribution in nature is to postulate that the
<i>wave-particle duality</i> first discovered in atomic physics operates at all scales of material systems, from atoms to the Universe. Reproduced from [2, 3].</span><br>
</div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><br>
</span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><b>Figure 1
</b>can readily accommodate the sound-induced Faraday waves in sessile water droplets captured by the CymaScope simply by adding a 10^th arrow directed to "10. Faraday waves in sessile droplets".</span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><br>
</span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif">According to this interpretation, the sound-induced Faraday waves formed in sessile water droplets as visualized the CymaScope obey and embody the principle of wave-particle
duality (PWPD) and hence I predict that the digital CymaScopic images of these droplets should fit PDE, the Planckian Distribution Equation, y = (A/(x + B)^5/(Exp (C/(x + B)) - 1), where x is the signal intensity of the CymaScopic image pixels, and y is their
frequency. If this prediction proves to be validated, the phenomenon of the sound-induced Faraday waves in sessile water droplets visualized by the CymaScope may be considered as one of the simplest mesoscopic material system in which PWPD is proven to operate,
thus opening up the possibility that PWPD may also operate in living cells and their component biopolymers as I suggested in the abstract to the 2017 Biophysical Society Annual Meeting [6] which is reproduced below: </span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><br>
</span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span>"261-Pos Board B26 </span></span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span><b><span style="color:rgb(255,0,0)">Protein Folding as a Resonance Phenomenon, with Folding Free Energies Determined by Protein-Hydration Shell Interactions </span></b></span></span><span style="font-family: "Times New Roman", serif; font-size: 12pt; color: rgb(255, 0, 0);">Sungchul
Ji. Pharmacology and Toxicology, Rutgers University, Kendall Park, NJ, USA.</span><span style="font-family: "Times New Roman", serif; font-size: 12pt;"> </span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span><br>
</span></span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span style="color:rgb(255,0,0)">The single-molecule enzyme-turnover-time histogram of cholesterol oxidase [1] resembles the blackbody radiation spectrum at 4000 K.
This observation motivated the author to generalize the Planck radiation equation (PRE), Sl = (8phc/l5 )/(ehc/lkT 1), by replacing the universal constants and temperature by free parameters, resulting in the Planckian Distribution Equation (PDE), y = (A/(x
þ B)5 )/(eC/(x þ B) 1) [2]. Since the first factor in PRE reflects the number of standing waves generated in the blackbody and the second factor the average energy of the standing waves [3], it was postulated that any material system that generates data fitting
PDE can be interpreted as implicating standing waves with associated average energies [2]. PDE has been found to fit the long-tailed histogram of the folding free-energy changes measured from 4,300 proteins isolated from E. coli [4]. One possible interpretation
of this finding is (i) that proteins (P) and their hydration shells (HS) are organized systems of oscillators with unique sets of natural frequencies, (ii) Ps assume their conformations whose standing waves are frequency-matched (or resonate) with the standing
waves of their HSs, and (iii) the folding free energies are determined by the resonance frequencies of the P-HS complexes. </span></span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span style="color:rgb(255,0,0)"><br>
[1] Lu, H. P., Xun, L. and Xie, X. S. (1998). Single-Molecule Enzymatic Dynamics. Science 282, 1877-1882. </span></span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span style="color:rgb(255,0,0)">[2] Ji, S. (2012) Isomorphism between Blackbody Radiation and Enzyme Catalysis. In: Molecular Theory of the Living Cell: Concepts, Molecular
Mechanisms and Biomedical Applications. Springer, New York, pp. 343-368. http:// www.conformon.net/wp-content/uploads/2012/11/Isomorphism_blackbody_ radiation_enzymic_catalysis_p343_p368.pdf </span></span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span><span style="color:rgb(255,0,0)">[3] Blackbody radiation.
</span><a href="http://hyperphysics.phy-astr.gsu.edu/hbase/mod6" class="OWAAutoLink" id="LPlnk864894" previewremoved="true" tabindex="-1"><span style="color:rgb(255,0,0)">http://hyperphysics.phy-astr.gsu.edu/hbase/mod6</span></a><span style="color:rgb(255,0,0)">.
html </span></span></span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span style="color:rgb(255,0,0)">[4] Dill, K. A., Ghosh, K. and Schmidt, J. D. (2011) Physical limits of cells and proteomes. PNAS 108:17876-82." </span><br>
<span style="color:rgb(255,0,0)"></span></span></div>
<span style="color:rgb(255,0,0)"></span>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><br>
</span></div>
<div><span style="font-size:12pt; font-family:"Times New Roman",Times,serif">R<span style="font-size:12pt">e</span></span><u style="font-family:"Times New Roman",serif; font-size:12pt"><span style="font-family:"Times New Roman",Times,serif; font-size:12pt">ferences</span></u><span style="font-size:12pt; font-family:"Times New Roman",Times,serif">:</span><br>
</div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span style="font-family:"Times New Roman",Times,serif; font-size:12pt"> [1] Reid, J. S. </span><span style="font-family:"Times New Roman",Times,serif"><a href="http://www.cymascope.com/index.html" class="OWAAutoLink" id="LPlnk183968" style="" previewremoved="true" tabindex="-1"><span style="font-size:12pt">http://www.cymascope.com/index.html</span></a><a href="http://www.cymascope.com/index.html" class="OWAAutoLink" id="LPlnk204478" previewremoved="true" tabindex="-1"></a></span><a href="http://www.cymascope.com/index.html" class="OWAAutoLink" id="LPlnk373036" previewremoved="true" tabindex="-1"></a><a href="http://www.cymascope.com/index.html" class="OWAAutoLink" id="LPlnk275431" previewremoved="true" tabindex="-1"></a></span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span style="font-size:12pt"> [2] Farady waves. </span><a href="https://en.wikipedia.org/wiki/Faraday_wave" class="OWAAutoLink" id="LPlnk489480" previewremoved="true" tabindex="-1"><span style="font-size:12pt">https://en.wikipedia.org/wiki/Faraday_wave</span></a></span><br>
</div>
<div><span style="font-family:"Times New Roman",Times,serif; font-size:12pt"> [3] Ji, S. (2015). </span><span style="font-family:"Times New Roman",Times,serif"><span style="font-size:12pt">Planckian distributions in molecular machines, living cells, and
brains: The wave-particle duality in biomedical sciences. </span><span><i><span style="font-size:12pt">Proceedings of the International Conference on Biology and Biomedical Engineering</span></i><span style="font-size:12pt">, Vienna, March 15-17, 2015. Pp.
115-137. PDF at </span><a href="http://www.conformon.net/wp-content/uploads/2016/09/PDE_Vienna_2015.pdf" class="OWAAutoLink" id="LPlnk494630" previewremoved="true" tabindex="-1"><span style="font-size:12pt">http://www.conformon.net/wp-content/uploads/2016/09/PDE_Vienna_2015.pdf</span></a></span><br>
</span></div>
<div><span style="font-size:12.0pt; line-height:106%; font-family:"Times New Roman",serif"><span style="font-family:"Times New Roman",Times,serif; font-size:12pt"> [4</span><span style="font-family:"Times New Roman",Times,serif"><span style="font-size:12pt">]
Ji, S. (2018). </span><i><span style="font-size:12pt">The Cell Language Theory: Connecting Mind and Matter.</span></i><span style="font-size:12pt"> World Scientific Publishing, New Jersey. P. 360.</span><br>
<span style="font-size:12pt"> [5] </span><span style="color:rgb(51,51,51); font-family:Lato,sans-serif; font-size:12pt">Ji, S. (2016). </span><a href="http://www.conformon.net/wp-content/uploads/2016/09/PDE_SymmetryFestival_2016.pdf" target="_blank" id="LPlnk153683" class="OWAAutoLink" style="background-image:initial" previewremoved="true" tabindex="-1"><span style="font-size:12pt">WAVE-PARTICLE
DUALITY IN PHYSICS AND BIOMEDICAL SCIENCES.</span></a><span style="color:rgb(51,51,51); font-family:Lato,sans-serif; font-size:12pt"> </span><em style="color:rgb(51,51,51); font-family:Lato,sans-serif; font-size:16px"><span style="font-size:12pt">Symmetry:
Science and Culture</span></em><span style="color:rgb(51,51,51); font-family:Lato,sans-serif; font-size:12pt"> </span><span style="font-weight:700; color:rgb(51,51,51); font-family:Lato,sans-serif; font-size:12pt">27</span><span style="color:rgb(51,51,51); font-family:Lato,sans-serif; font-size:16px"><span style="font-size:12pt">(2):
99-127 (2016). PDF at </span><span style="font-size:12pt"><a href="http://www.conformon.net/wp-content/uploads/2016/09/PDE_SymmetryFestival_2016.pdf" class="OWAAutoLink" id="LPlnk260947" previewremoved="true" tabindex="-1">http://www.conformon.net/wp-content/uploads/2016/09/PDE_SymmetryFestival_2016.pdf</a>|<br>
</span><a href="http://www.conformon.net/wp-content/uploads/2016/09/PDE_SymmetryFestival_2016.pdf" class="OWAAutoLink" id="LPlnk525540" previewremoved="true" tabindex="-1"></a></span> [6] Ji, S. (2017). </span><span style="font-size:12pt; font-family:Helvetica,arial,sans-serif">Protein
Folding as a Resonance Phenomenon, with Folding Free Energies Determined by Protein-Hydration Shell Interactions</span><span style="font-family:"Times New Roman",Times,serif">
<div class="authorGroup" style="padding-top:3px; margin-bottom:7px; font-size:0.85em; color:rgb(51,51,51); font-family:arial,sans-serif">
<nobr style="color:rgb(109,123,141); font-size:inherit"><a id="LPlnk562645" class="pxInta OWAAutoLink" href="https://www.cell.com/biophysj/abstract/S0006-3495(16)31347-9?code=cell-site#" style="color:rgb(29,64,123)" previewremoved="true" tabindex="-1">DOI</a></nobr><span style="color:rgb(109,123,141); font-size:0.85em">: </span><a href="https://doi.org/10.1016/j.bpj.2016.11.317" id="LPlnk78290" class="OWAAutoLink" title="https://doi.org/10.1016/j.bpj.2016.11.317
Ctrl+Click or tap to follow the link" style="font-size:0.85em; color:rgb(29,64,123)" previewremoved="true" tabindex="-1">https://doi.org/10.1016/j.bpj.2016.11.31</a><br>
</div>
(<a href="http://www.cell.com/biophysj/pdf/S0006-3495(16)31347-9.pdf" class="OWAAutoLink" id="LPlnk848967" previewremoved="true" tabindex="-1">www.cell.com/biophysj/pdf/S0006-3495(16)31347-9.pdf</a></span></span></div>
<div><br>
</div>
<div>If you have any questions or comments, let me know.</div>
<div><br>
</div>
<div>Sung</div>
<div><br>
</div>
<div><br>
</div>
<div><br>
</div>
<div>
<div id="meta" class="style-scope ytd-watch" style="margin:0px; padding:0px; border:0px; background-image:initial">
<div id="meta-contents" class="style-scope ytd-watch" style="margin:0px; padding:0px; border:0px; background:transparent">
<div id="container" class="style-scope ytd-video-secondary-info-renderer" style="margin:0px; padding:0px; border:0px; background:transparent">
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
</div>
</div>
<div id="offer-module" class="style-scope ytd-watch" style="margin:0px; padding:0px; border:0px; background:transparent">
</div>
</div>
<div id="ticket-shelf" class="style-scope ytd-watch" style="margin:0px; padding:0px; border:0px; background-image:initial">
</div>
<div id="merch-shelf" class="style-scope ytd-watch" style="margin:0px; padding:0px; border:0px; background-image:initial">
</div>
<div id="donation-shelf" class="style-scope ytd-watch" style="margin:0px; padding:0px; border:0px; background-image:initial">
</div>
<div id="header" class="style-scope ytd-item-section-renderer" style="margin:0px; padding:0px; border:0px; background:transparent">
<div id="title" class="style-scope ytd-comments-header-renderer" style="margin:0px 0px 24px; padding:0px; border:0px; background:transparent; display:flex">
</div>
</div>
</div>
<br>
<p></p>
</div>
</body>
</html>