<div dir="ltr">

<p class="MsoNormal"><b>INTRODUCTION</b></p>

<p class="MsoNormal">Data is that what we see by
using the eyes. Information is that what we do not see by using the eyes, but
we see by using the brain; because it is the background to that what we see by
using the eyes.</p>

<p class="MsoNormal">Data are the foreground, the
text, which are put into a context by the information, which is the background.
In Wittgenstein terms: Sachverhalt and Zusammenhang (which I translate –
unofficially – as facts /data/ and context /relationships/). </p>

<p class="MsoNormal">The “context” component shows
the equivalent alternatives to the data object. This we find by using the
commutative symbols which generate the categories in which the data object is
included. The “data” component is then the individuating sequential symbol
which points out one specific from among the members of the communicative
category. </p>

<p class="MsoNormal">The formal definition of the
term “information” is as follows:</p>

<div style="border-width:1pt;border-style:solid;border-color:windowtext;padding:1pt 4pt">

<p class="gmail-MDPI31text" style="text-align:center;border-width:medium;border-style:none;border-color:currentcolor;padding:0cm" align="center"><b><span>“Let <i>x = a<sub>k</sub></i>. This is a statement,
no information contained. Let <i>x = a<sub>k</sub></i>
and <i>k </i></span></b><b><i><span style="font-family:Symbol"><span>Î</span></span></i></b><b><i><span> {1,2,...,k,...,n}</span></i></b><b><span>.
This statement contains the information <i>k
</i></span></b><b><i><span style="font-family:Symbol"><span>Ï</span></span></i></b><b><i><span> {1,2,...,k-1,k+1,...,n}”</span></i></b><b><span>.</span></b></p>

</div>

<p class="MsoNormal"> </p>

<p class="MsoNormal">A numeric approach uses the
concept of counting in terms of consolidation of displacements, and points out
the data as a specific element of a cycle, the information part being the
communication about which cycle the element is part of /= data about the
remaining elements /. In the following paragraphs we show the technique, by
which the term “information” is to be explained, can be established </p>

<p class="MsoNormal"><b>METHODOLOGY</b></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>Material we work with:</b> We
begin by creating elements of a set. The set we construct to demonstrate how to
establish information content consists of realisations of the logical sentence <i>a+b=c. </i>That is, if we use <i>d </i>distinguishing categories of elements,
we shall have a set that contains the elements <i>{(1,1), (1,2), (2,2), (1,3), (2,3), (3,3), (1,4), (2,4), …., (d,d)}. </i>These
elements we refer to as <i>(a,b), a <=b.</i></p>

<p class="MsoNormal"> </p>

<p class="MsoNormal">The number <i>n </i>of
the elements of the set is of course dependent of <i>d</i>, <i>n = f(d). </i><span> </span><i>n =
d(d+1)/2.</i></p>

<p class="MsoNormal">While the <i>principle </i>of
information management is valid over a wide range of values of <i>d</i>, it can be shown (OEIS A242615) that
for reasons of numerical facts, the <i>efficiency
</i>of information management is the highest when using <i>d=16, </i>which yields <i>n=136. </i>Nature
also appears to use the mathematically optimal method of information
transmission.</p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>What we look into the material
1:</b> properties of the elements. We use the set of elements created such as a
kind of Rorschach cards, looking aspects into them.</p>

<p class="MsoNormal">We use, next to the traditional aspects <i>{a, b, c=a+b}</i> some additional aspects of <i>a+b=c </i>also, namely <i>{u=b-a,
k=2b-a, t=3b-2a, q=2a-b, s=(d+1) - (a+b), w=3a-2b},</i> that is, altogether <i>9 aspects of a+b=c. </i></p>

<p class="MsoNormal">Users are of course free and invited to introduce additional
or different aspects to categorise logical sentences with. The <i>number</i> of aspects needs not to be higher
of 8 if they are used in combination (we refer here again to the facts
discussed in OEIS A242615), and as to the <i>kinds</i>
of aspects: one is always open to improvements.</p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>What we look into the material
2:</b> properties of the set.<span>  </span>We impose
sequential orders on the elements of the set, using combinations of aspects.</p>

<p class="MsoNormal">We generate <i>sequencing
aspects </i><span> </span>by using always 2 of the 9 <i>primary aspects, </i>by creating sequential
orders within the set such that each of the primary aspects is once the <i>first</i> and once the <i>second </i>ordering aspect. That is, we sequence the set on the
criteria <i>{ab, ac, ak, au, …, as, aw, ba,
bc, bu, …, bw, ca, cb, …, cw, ka, kb, …, …, wt, ws}. </i><span> </span>This brings forth 72 sequential enumerations
of the elements of the set. Of these, about 20 are actually different. (The
inexactitude regarding the number of identical sequential enumerations has to
do with the <i>sequence</i> of the primary
aspects and will be of fundamental importance in the course of the applications
of the model.)</p>

<p class="MsoNormal">The 72 different sequences the elements – of which some are
different in name only -<span>  </span>of the set have
been brought into are called the <i>catalogued
sequences. </i>These are by no means random<span> 
</span>but are as closely related to each other as aspects of <i>a+b=c </i>can be closely related to each
other. Each of the catalogued sequences is equally legitimate and each is an
implicated corollary of <i>a+b=c, </i>now
having been made explicit (=realised).</p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>What we observe within the
material 1:</b> logical conflicts. We will not ignore conflicts between place
and inhabitant, inhabitant and place.</p>

<p class="MsoNormal">It is obvious that 2 different catalogued orders unveil
logical conflicts. If in order <i>αβ</i>
element <i>e </i>is to be found on place <i>p<sub>1</sub></i> and in order <i>γδ</i> element <i>e </i>is to be found on place <i>p<sub>2</sub></i>,
there is apparently a conflict.</p>

<p class="MsoNormal">The same conflict can also be stated by using the
formulation: If in order <i>αβ</i> on place <i>p </i>element <i>e<sub>1</sub></i> is to be found and in order <i>γδ </i>on place <i>p </i>element <i>e<sub>2</sub></i> is to be found, there is
apparently a conflict.</p>

<p class="MsoNormal">We observe potentially or actually conflicting assignments
of a sequential number <i>{1..n}</i><span>  </span>to one and the same element of the set, in
dependence of which of the catalogued orders we deem to be actually the case.
As we decline to entertain an epistemological attitude of human decisions
creating and ceasing logical conflicts, we look into methods of solving these
potential and realised conflicts. As the two orders <i>αβ</i> and <i>γδ</i>, if they are
different, create dislocations of the elements relative to their own
conceptions of which is the correct place for an individual element to be in,
we speak of <i>a consolidation of
dislocations</i> that we aim at.</p>

<p class="MsoNormal"> </p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>What we look into the material
3:</b> series of place changes. We transform linear arrangement <i>αβ</i> into linear arrangement <i>γδ</i>.</p>

<p class="MsoNormal">We have observed that if we once order the set sequentially
according to sorting order <i>αβ</i> (say,
e.g. on arguments: <i>a,b</i>), and then
again on a different sorting order <i>γδ</i>
(say, e.g. on arguments: <i>b,a</i>), then
we have conflicting assignments of places to most of the elements. (This
example is worked through in great detail in OEIS A235647. The sequence: <i>{(1,1), (1,2), (2,2), (1,3), (2,3), (3,3),
(1,4), (2,4), …., (d,d)} </i>shows the set to be sorted on arguments <i>b,a</i>, while the sequence <i>{(1,1), (1,2), (1,3), …, (1,d), (2,2), (2,3),
…, (2,d), (3,3), (3,4), (3,d), …., (d,d)} </i>shows the set to be sorted on
arguments <i>a,b.</i>)</p>

<p class="MsoNormal">The position of an element <i>(a,b) </i>in the linear sequence that has been created by sorting the
set on arguments <i>b,a</i></p>

<p class="MsoNormal">is given by (1), </p>

<p class="MsoNormal" style="text-align:center" align="center"><i><span> </span>x = position ( (a,b), d, (b,a) )
= b* (b-1) / 2 + a<span>                                                 </span><span>                             </span>(1)</i></p>

<p class="MsoNormal">The position of an element <i>(a,b) </i>in the linear sequence that has been created by sorting the
set on arguments <i>a,b</i></p>

<p class="MsoNormal">is given by (2), </p>

<p class="MsoNormal" style="text-align:center" align="center"><i><span> </span>x = position ( (a,b), d, (a,b) )
= d*(d + 1) / 2 – ( d – a + 1 ) * ( d – a + 2 ) / 2 + ( b – a + 1) <span> </span>(2)</i></p>

<p class="MsoNormal">where the SYNTAX is:</p>

<p class="MsoNormal">x<span>                                         </span><span>               </span>resulting position of element</p>

<p class="MsoNormal">position ( <b>(a,b)</b>,
d, (a,b) )<span>              </span>elements with
numerical values a,b</p>

<p class="MsoNormal">position ( (a,b), <b>d, </b>(a,b)
)<b><span>               </span></b>number of distinct
categories, resulting for number of elements in <span>                          </span>s <span>                                                    </span>set<span>  </span><i>n =
d*(d+1)/2</i></p>

<p class="MsoNormal">position ( (a,b), d, (<b>a,b</b>)
)<span>               </span>sorting order resulting
from first criterium: a, second criterium: b</p>

<p class="MsoNormal"><span> </span>We now visualise a
series of <i>travels - bumps – pushes –
travels – bumps – pushes – travels - … - travels. </i>In this vivid imagination
about how the reordering, from order according to <i>αβ</i> into order according to <i>γδ</i>,
actually takes place, one starts off with the first element one encounters in
the present order <i>αβ </i>and moves it to
its new place in order <i>γδ. </i>There, the
element <i>bumps</i> into that element which
occupies that place in this moment. This element is then <i>pushed</i> out of its place and <i>travels</i>
to its new place, where it <i>bumps </i>into
that element which occupies its place, <i>pushes
</i>that element out of its place, which then <i>travels </i>etc. etc. etc. until the Last element of the cycle <i>travels </i>to that place which has been
vacated by the first element one has started the reorder with. On that place a
void has been the case since the first element of the cycle had begun its <i>travel.</i></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>What we observe within the
material 2:</b> a web of paths. We see tautologies, compromises and
discontinuities.</p>

<p class="MsoNormal">Extending the concept demonstrated above on a rearrangement
from sorting order <i>(a,b)</i> into sorting
order <i>(b,a) </i>onto rearrangements from
any of the 72 catalogued orders into any different of the catalogued orders, we
arrive at 72*71/2 = 2.556 <i>transitions, </i>where
each transition contains 136 <i>steps. </i>This
gives us a <i>Basic Table of Transitions </i>that
has 347.616 rows. Each row contains the data <i>from_order, into_order, value_a, value_b, cycle_nr, step_in_cycle,
place_from, place_to. </i></p>

<p class="MsoNormal">Of these data, one may construct many planes and some
spaces. The <i>place_from, place_to </i>values
are coordinates on a plane, of which the axes are named <i>from_order, into_order, </i>and the x,y values are the integers that
represent the sequential place of the element in the respective sequential
orders.</p>

<p class="MsoNormal">In some cases, one can observe that spaces can be
constructed with 3 rectangular axes. For more details on this observation,
please generate the tables on your own computer, or see the discussion in <i>Learn To Count In Twelve Easy Steps [1], </i>or
<i>Natural Orders [2].</i></p>

<p class="MsoNormal">The cycles connect points of planes, in some cases: points
that have coordinates in 3 dimensions.</p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>What we observe within the
material 3:</b> logical relations. The entries in our databases are connected
among each other in manifold ways, both in commutative and also in sequential
enumerations. We make use of the algorithmic tool known as “cyclic
permutations”. This tool assigns symbols to the elements which are <i>both commutative and sequential. </i></p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal">One has to distance oneself from the quasi-objective impression which
the sensual apparatus confers: Our senses lead us to erroneously believe that
the property of an assembly to be sequenced or to be commutative are two
mutually exclusive categories.</p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"> </p>

<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal"><b>DISCUSSION OF INFORMATION
CONTENT</b></p>

<p class="MsoNormal">We now come to the information content of a communication.
The concept we now put forward is an improvement on the Shannon concept. In the
Shannon understanding of data transmission, the communication points out 1
place within a limited range and transmits the relevant value by using symbols
which can be {0,1}.<span>  </span>In the Shannon
concept, the individuality of the element is negated: the element is understood
to be identical in meaning with the place it occupies. In the Shannon
understanding, any element <i>i </i><b><i><span style="font-family:Symbol"><span>Î</span></span> N </i></b>receives
its properties by the place <i>i </i>it
occupies on the number line.<i><span>  </span></i></p>

<p class="MsoNormal">Here, we also use a limited range – namely the number of
elements of the corpus of a cycle – and transmit descriptions which allow us to
point out the value of 1 element. In a visualisation, we bend the section of
the number line which Shannon imagines straight, albeit limited, until it
becomes a closed cycle. In this loop, we point out, <i>which</i> of the elements of the loop we mean, and also, <i>which loops </i>this element is included in.</p>

<p class="MsoNormal"><b>Example: </b>In order
to clarify the differences between the Shannon method and the method apparently
used by the central nervous system of animals, we discuss an example with <i>n </i>pupils of a class.</p>

<p class="MsoNormal">When identifying a pupil in a class of <i>n </i>pupils, we can proceed with Shannon and:</p>

<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt 36pt;line-height:normal"><span><span>1)<span style="font:7pt "Times New Roman"">     
</span></span></span>Line up the pupils,</p>

<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt 36pt;line-height:normal"><span><span>2)<span style="font:7pt "Times New Roman"">     
</span></span></span>Give each pupil 1 sequential number</p>

<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt 36pt;line-height:normal"><span><span>3)<span style="font:7pt "Times New Roman"">     
</span></span></span>Transmit repeatedly, which half of the line-up
the pupil is included in, until we point out the place the pupil whom we wish
to point out stands on. The identification of the inhabitant happens by means
of the place it inhabits.</p>

<p class="MsoNormal">One will note, hat the Shannon approach also uses a <b>limited length </b>subsection of the number
line <b>N</b>, otherwise the transmission
of symbols would not be interpretable. </p>

<p class="MsoNormal">Our approach would be:</p>

<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt 36pt;line-height:normal"><span><span>1)<span style="font:7pt "Times New Roman"">     
</span></span></span>Do not line up the pupils, but rather sort them
on</p>

<p class="MsoNormal" style="margin-left:36pt">a) hair colour</p>

<p class="MsoNormal" style="margin-left:36pt">b) age</p>

<p class="MsoNormal" style="margin-left:36pt">c) weight</p>

<p class="MsoNormal" style="margin-left:36pt">d) height</p>

<p class="MsoNormal" style="margin-left:36pt">e) voice pitch</p>

<p class="MsoNormal" style="margin-left:36pt">f) etc. (One can read off OEIS
242615, how many properties can maximally be used with n pupils.)</p>

<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt 36pt;line-height:normal"><span><span>2)<span style="font:7pt "Times New Roman"">     
</span></span></span>Establish, who would change places with whom if
a linear reorder would take place from property “x” into property “y” (in this
example, there are 5*4/2=10 reorders); which cycles the individual pupils would
belong to;</p>

<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt 36pt;line-height:normal"><span><span>3)<span style="font:7pt "Times New Roman"">     
</span></span></span>Transmit the cycles the element is included in,
using parallel channels; </p>

<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt 36pt;line-height:normal"><span><span>4)<span style="font:7pt "Times New Roman"">     
</span></span></span>The background to the element sought are those
elements which are not included in all cycles.</p>

<p class="MsoNormal"> </p>

<p class="MsoNormal">In the former method, one knows the number of bits needed to
identify 1 of n elements in a set. In the latter method, one can learn and one
can adapt.</p>

<p class="MsoNormal">In the former method, the elements have no relationships
among each other: the method is well suited to transmit data that can be
random. The latter method uses the immanent facts of belonging-to among
elements that exist prior to human knowledge. This method is well-suited to
transmit observations that relate to a world, in which the rule of <i>a+b=c</i> is valid.</p>

<p class="MsoNormal"> </p>

<p class="MsoNormal">Shannon does not distinguish between the properties of any
inhabitant of a place on <b>N </b>and the
place.</p>

<p class="MsoNormal">In our method, we have a clear distinction between the
object, its properties, its tendency to be place-bound and any place it might
occupy. This approach mirrors the <b>level of intelligence evidenced by insects</b>
which recognise food, irrespective of its place, and places, irrespective of
whether a food is there. In a discussion in FIS a few months ago, the thesis
was brought forward, that the human brain employs older, more archaic regions
and methods to create an inner chart of its surroundings than the regions or
methods which are used to distinguish objects.</p>

<p class="MsoNormal">The individuality of the object one can point out by the
proposed (“tautomatic”) method of information transmission relies not on the
place the object had occupied or is supposed to continuously occupy, but on the
relative differences it possesses to the other objects of the set.</p>

<p class="MsoNormal"> </p>

<p class="MsoNormal">In the example:</p>

<p class="MsoNormal">Object Mausi is that object which is changing places with
object Hansi when compared no more on hair colour but on voice pitch; object
Lili is that object which is changing places with objects Mausi and Clarita
when being reordered from weight into hair colour; </p>

<p class="MsoNormal">object <i>j </i>is
included <span>    </span>(i.),</p>

<p class="MsoNormal">while the set is being reordered from property <i><span>α</span>
</i>(induced sequential linear enumeration) into property <i><span>β</span> <span>    </span></i><span>              </span>(ii.),</p>

<p class="MsoNormal">together with objects <i><span> </span>p,r,q,s </i>into cycle <i>(</i><i><span>α</span>,</i><i><span>β</span>,n,C<sub>z</sub>)</i> <span> </span><span>   </span>(iii.),</p>

<p class="MsoNormal">and concurrently is included (iv.),</p>

<p class="MsoNormal">while the set is being reordered from property <i><span>γ</span></i>
(induced sequential linear enumeration) into property <i><span>δ</span><span>  </span></i><span>                 </span>(v.),</p>

<p class="MsoNormal">together with objects <i><span> </span>k,l,p,f,w,s </i>into cycle <i>(</i><i><span>γ</span>,</i><i><span>δ</span>,n,C<sub>q</sub>)</i><span>     </span>(vi.),</p>

<p class="MsoNormal">and concurrently is included (vii.),</p>

<p class="MsoNormal">while the set is being reordered from property <i><span>κ</span>
</i>(induced sequential linear enumeration) into property <i><span>λ</span> </i><span>                  </span>(viii.),</p>

<p class="MsoNormal">together with objects <i><span> </span>b,r,t,s </i>into cycle <i>(</i><i><span>κ</span>,</i><i><span>λ</span>,n,C<sub>s</sub>)</i><span>  </span><span>   </span>(ix.),</p>

<p class="MsoNormal">and so forth.</p>

<p class="MsoNormal">SYNTAX:</p>

<p class="MsoNormal">Objects <i>i,I,p,r,q,s,k,l,p,f,w,s,b,r,t,s
</i>are pupils, of whom <i>l, p, r </i>and<i> s </i>appear more than once, the object
which appears in all of the corporis is object <i>i</i>;</p>

<p class="MsoNormal">Properties <i><span>α,β,γ,δ,κ,λ </span></i><span>are categories like hair colour, weight,
age, etc.: on these properties linear enumerations are possible and are
considered to be existent;</span></p>

<p class="MsoNormal">cycle <i>(</i><i><span>κ</span>,</i><i><span>λ</span>,n,C<sub>s</sub>)
</i>symbolises the corpus of the cycle numbered <i>s </i>which is to be observed during a reorder of a set’s <i>n </i>elements from a linear enumeration
according to property <i><span>κ</span></i> into a linear enumeration
according to property <i><span>λ</span>.</i></p>

<p class="MsoNormal"> </p>

<p class="MsoNormal">In plain speech explained, the principle is that </p>

<p class="MsoNormal">An individual is characterised by its rank in a number of
properties (the maximal number of relevant properties describing a collection
of <i>n </i>individuals can be read off the
function presented in OEIS A242615); its ranks in the properties are made
observable by the elements which are co-included in the respective corpus of
the differing cycles which are generated during reorders among the properties.</p>

<p class="MsoNormal">In actual fact, this method of screening and filtering out individuals
from among a multitude is widely used by industry and military organisations.
There, they may filter out people who, say, are good in French, can draw
freehand, can swim well, but need not shoot precisely or have absolute pitch
hearing. In these examples of factual usage of the principle, there exist
rankings outside of the data which are applied unto the data: in the method
shown here, the rankings are implicit corollaries of the collection which the
human intellect objectifies as independent of the objects, erroneously in the
same fashion as optical illusions are erroneous.<span></span></p>

<p class="MsoNormal"><b> </b></p>

<p class="MsoNormal"><b>CONCLUSION</b></p>

<p class="MsoNormal">We have looked properties into a collection of logical
objects. We have observed logical conflicts. The logical conflicts can be – in
some cases – consolidated by means of compromise-building. We point out that
the normal, usual state of the world as depicted by this imagination is that of
a collection in which dislocations and differences, under- and over-densities,
agglomerations and voids exist.</p>

<p class="MsoNormal">In case one is ready to rely on one’s abilities to think
conclusively, one will arrive at the conclusion that a world which is depicted
by the logical sentence <i>a+b=c </i>is a
world in which a disorder <i>a priori </i>exists.
Furthermore, one would be inclined to assume that the property of the world to
appear disordered to us would be a constituent property of that world which we
imagine while observing rules of logic: therefore, one can assume that a <i>usual, average, medium</i> degree of
disorder exists; while the <i>form and
appearance</i> of that disorder will be changing, its <i>substance and extent</i> remains stable. (That is: there should be
assumed a global coefficient of being disordered.)</p>

<p class="MsoNormal">We propose to invite a name-giving convention, which can
assign descriptive labels to the variety of quantitative and qualitative
dislocations one observes. It may turn out, that “energy”, “information”,
“force”, “mass” are as closely related to each other as readings of the
statement <i>a+b=c</i> are related to each
other.</p>

</div>