<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    Note: what follows is an abbreviated text taken from the
    presentation.<br>
    The whole file, too big for our list, can be found at fis web pages:
    <br>
    <a class="moz-txt-link-freetext"
href="http://fis.sciforum.net/wp-content/uploads/sites/2/2014/11/Planckian_information.pdf">http://fis.sciforum.net/wp-content/uploads/sites/2/2014/11/Planckian_information.pdf</a><br>
    A very recent article developing similar ideas:
    <a class="moz-txt-link-freetext" href="http://www.mdpi.com/2078-2489/8/1/24">http://www.mdpi.com/2078-2489/8/1/24</a><br>
    Greetings to all--Pedro<br>
------------------------------------------------------------------------------------------------------------------- 
    <br>
    <br>
    <br>
    <o:smarttagtype
      namespaceuri="urn:schemas-microsoft-com:office:smarttags"
      name="City"><!--[if gte mso 9]><xml>
 <w:WordDocument>
  <w:View>Normal</w:View>
  <w:Zoom>0</w:Zoom>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:Compatibility>
   <w:BreakWrappedTables/>
   <w:SnapToGridInCell/>
   <w:WrapTextWithPunct/>
   <w:UseAsianBreakRules/>
   <w:DontGrowAutofit/>
   <w:UseFELayout/>
  </w:Compatibility>
  <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel>
 </w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
 <w:LatentStyles DefLockedState="false" LatentStyleCount="156">
 </w:LatentStyles>
</xml><![endif]--><!--[if !mso]><object
 classid="clsid:38481807-CA0E-42D2-BF39-B33AF135CC4D" id=ieooui></object>
<style>
st1\:*{behavior:url(#ieooui) }
</style>
<![endif]-->
      <style>
<!--
 /* Font Definitions */
 @font-face
        {font-family:"MS Mincho";
        panose-1:2 2 6 9 4 2 5 8 3 4;
        mso-font-alt:"MS 明朝";
        mso-font-charset:128;
        mso-generic-font-family:modern;
        mso-font-pitch:fixed;
        mso-font-signature:-536870145 1791491579 18 0 131231 0;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;
        mso-font-charset:0;
        mso-generic-font-family:swiss;
        mso-font-pitch:variable;
        mso-font-signature:-536870145 1073786111 1 0 415 0;}
@font-face
        {font-family:"\@MS Mincho";
        panose-1:2 2 6 9 4 2 5 8 3 4;
        mso-font-charset:128;
        mso-generic-font-family:modern;
        mso-font-pitch:fixed;
        mso-font-signature:-536870145 1791491579 18 0 131231 0;}
 /* Style Definitions */
 p.MsoNormal, li.MsoNormal, div.MsoNormal
        {mso-style-parent:"";
        margin:0cm;
        margin-bottom:.0001pt;
        mso-pagination:widow-orphan;
        font-size:12.0pt;
        font-family:"Times New Roman";
        mso-fareast-font-family:"MS Mincho";}
@page Section1
        {size:612.0pt 792.0pt;
        margin:70.85pt 3.0cm 70.85pt 3.0cm;
        mso-header-margin:36.0pt;
        mso-footer-margin:36.0pt;
        mso-paper-source:0;}
div.Section1
        {page:Section1;}
-->
</style><!--[if gte mso 10]>
<style>
 /* Style Definitions */
 table.MsoNormalTable
        {mso-style-name:"Tabla normal";
        mso-tstyle-rowband-size:0;
        mso-tstyle-colband-size:0;
        mso-style-noshow:yes;
        mso-style-parent:"";
        mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
        mso-para-margin:0cm;
        mso-para-margin-bottom:.0001pt;
        mso-pagination:widow-orphan;
        font-size:10.0pt;
        font-family:"Times New Roman";
        mso-fareast-font-family:"Times New Roman";
        mso-ansi-language:#0400;
        mso-fareast-language:#0400;
        mso-bidi-language:#0400;}
</style>
<![endif]-->
      <p class="MsoNormal"
        style="margin-bottom:10.0pt;line-height:115%;mso-layout-grid-align:
        none;text-autospace:none"><b><span
            style="mso-ansi-language:EN-GB" lang="EN-GB"><font size="+2">What
              is the Planckian information ?</font></span></b></p>
      <p><font face="Times New Roman"><b>S</b><b>UNGCHUL JI</b></font><br>
      </p>
      <p><i><font face="Times New Roman">Department of Pharmacology and
            Toxicology<br>
            Ernest Mario School of Pharmacy<br>
            Rutgers University</font></i><br>
        <i><font face="Times New Roman"><a class="moz-txt-link-abbreviated" href="mailto:sji@pharmacy.rutgers.edu">sji@pharmacy.rutgers.edu</a></font></i></p>
      <p class="MsoNormal"
        style="margin-bottom:10.0pt;line-height:115%;mso-layout-grid-align:
        none;text-autospace:none"><b><span
            style="mso-ansi-language:EN-GB" lang="EN-GB"><br>
          </span></b><span style="mso-ansi-language:EN-GB" lang="EN-GB"><br>
          The Planckian information (I_P) is defined as the information
          produced (or
          used) by the so-called Planckian processes which are in turn
          defined as any
          physicochemical or formal processes that generate long-tailed
          histograms
          fitting the Planckian Distribution Equation (PDE), <o:p></o:p></span></p>
      <p class="MsoNormal"
        style="margin-bottom:10.0pt;line-height:115%;mso-layout-grid-align:
        none;text-autospace:none"><span style="mso-ansi-language:EN-GB"
          lang="EN-GB"><span style="mso-spacerun:yes">   </span></span><span
          style="mso-ansi-language:#000A">y
          = (A/(x + B^5)/(Exp(C/(x + B)) – 1)<span
            style="mso-spacerun:yes">                                                                     
          </span>(1)<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="margin-bottom:10.0pt;line-height:115%;mso-layout-grid-align:
        none;text-autospace:none"><span style="mso-ansi-language:#000A"><span
            style="mso-spacerun:yes"> </span></span><span
          style="mso-ansi-language:
          EN-GB" lang="EN-GB">where A, B and C are free parameters, x is
          the class or the bin to
          which<span style="mso-spacerun:yes">  </span>objects or
          entities belong, and y
          is the frequency [1, 1a].<span style="mso-spacerun:yes">  </span>The
          PDE was
          derived in 2008 [2] from the blackbody radiation equation
          discovered by M.
          Planck (1858-1947) in 1900, by replacing the universal
          constants and temperature
          with free parameters, A, B and C.<span
            style="mso-spacerun:yes">  </span>PDE
          has been found to fit not only the blackbody radiation spectra
          (as it should)
          but also numerous other long-tailed histograms [3, 4] (see
          Figure 1).<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">One possible
          explanation for the
          universality of PDE is that many long-tailed histograms are
          generated by some
          selection mechanisms acting on randomly/thermally accessible
          processes [3].
          Since random processes obey the Gaussian distribution, the
          ratio of the area
          under the curve (AUC) of PDE to that of Gaussian-like
          symmetric curves can be
          used as a measure of non-randomness or the order generated by
          the Planckian
          processes.<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">As can be seen in
          <b>Figs. 1 (g),
            (i), (k), (o), (r) </b>and<b> (t), </b>the curves labeled
          ‘Gaussian’ or
          ‘Gaussian-like’ overlap with the rising phase of the PDE
          curves.<span style="mso-spacerun:yes">  </span>The
          ‘Gaussian-like’ curves were generated by
          Eq. (2), which was derived from the Gaussian equation by
          replacing its
          pre-exponential factor with free parameter A:<br
            style="mso-special-character:
            line-break">
          <!--[if !supportLineBreakNewLine]--><br
            style="mso-special-character:line-break">
          <!--[endif]--><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><span
            style="mso-spacerun:yes">                      </span>y =
          Ae<sup>– (x – </sup></span><sup><span
            style="mso-ansi-language:#000A">μ</span></sup><sup><span
            style="mso-ansi-language:EN-GB" lang="EN-GB">)^2/(2</span></sup><sup><span
            style="mso-ansi-language:
            #000A">σ</span></sup><sup><span
            style="mso-ansi-language:EN-GB" lang="EN-GB">^2)</span></sup><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><span
            style="mso-spacerun:yes">                                                                                   
          </span>(2)<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">The degree of
          mis-match between the
          area under the curve (AUC) of PDE, Eq. (1), and that of GLE,
          Eq. (2), is
          postulated to be a measure of <i>non-randomness</i> (and
          hence <i>order</i>).<span style="mso-spacerun:yes">  </span>GLE
          is associated with random processes,
          since it is symmetric with respect to the sign reversal of in
          its exponential
          term, (x - µ).<span style="mso-spacerun:yes">  </span>This <i>measure
            of order</i>
          is referred to as the Planckian Information (I<sub>P</sub>)
          defined
          quantitatively as shown in Eq. (3) or Eq. (4):<span
            style="mso-spacerun:yes"> 
          </span><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><span
            style="mso-spacerun:yes">                  </span>I<sub>P</sub>
          = log<sub>2</sub>
          (AUC(PDE)/AUC(GLE))<span style="mso-spacerun:yes">   </span>bits<span
            style="mso-spacerun:yes">                                                        
          </span>(3)<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">or<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><br>
          <span style="mso-spacerun:yes">                  </span>I<sub>P<span
              style="mso-spacerun:yes">  </span></sub>= log<sub>2</sub>
          [∫P(x)dx/∫G(x)dx]<span style="mso-spacerun:yes">                
          </span>bits<span style="mso-spacerun:yes">                                
          </span><span style="mso-tab-count:2">            </span><span
            style="mso-spacerun:yes">        </span>(4)<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">where P(x) and
          G(x) are the Plackian
          Distribution Equation and the Gaussian-Like Equation,
          respectively. <br style="mso-special-character:line-break">
          <!--[if !supportLineBreakNewLine]--><br
            style="mso-special-character:line-break">
          <!--[endif]--><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">It is generally
          accepted that there
          are at least three basic aspects to information – <i>amount</i>,
          <i>meaning, </i>and
          <i>value. </i><span style="mso-spacerun:yes"> </span><i>Planckian
            information</i>
          is primarily concerned with the <i>amount</i> (and hence the
          <i>quantitative</i>
          aspect) of information.<span style="mso-spacerun:yes">  </span>There
          are
          numerous ways that have been suggested in the literature for <i>quantifying
            information</i> bedside the well-known Hartley information,
          <st1:place w:st="on">Shannon</st1:place>
          entropy, algorithmic information, etc [5].<span
            style="mso-spacerun:yes"> 
          </span>The Planckian information, given by Equation (3), is a
          new measure of
          information that applies to the <i>Planckian process</i>
          generally defined as
          in (5):<br>
          <br>
          “Planckian processes are the physicochemical,
          neurophysiological, <span style="mso-tab-count:1">          
          </span><span style="mso-spacerun:yes">                    </span>(5)<br>
          biomedical, mental, linguistic, socioeconomic, cosmological,
          or any <o:p></o:p></span></p>
      <p class="MsoNormal"
        style="line-height:115%;mso-layout-grid-align:none;
        text-autospace:none"><span style="mso-ansi-language:EN-GB"
          lang="EN-GB">other
          processes that generate long-tailed histograms obeying the <br>
          Planckian distribution equation (PDE).”<br
            style="mso-special-character:line-break">
          <!--[if !supportLineBreakNewLine]--><br
            style="mso-special-character:line-break">
          <!--[endif]--><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">The Planckian
          information represents
          the degree of organization of physical (or nonphysical)
          systems in contrast to
          the Boltzmann or the Boltzmann-Gibbs entropy which represents
          the
          disorder/disorganization of a physical system, whether the
          system involved is
          atoms, enzymes, cells, brains, human societies, or the
          Universe.<span style="mso-spacerun:yes">   </span>I_P is
          related to the “organized complexity”
          and S is realted to “disorganized complexity” of Weaver [6].<span
            style="mso-spacerun:yes">  </span>The organization
          represented by I<sub>P</sub>
          results from <i>symmetry-breaking selection</i> <i>processes
          </i>applied to
          some randomly accessible (and hence symmetrically distributed)
          processes,
          whether the system involved is atoms, enzymes, cells, brains,
          languages, human
          societies, or the Universe [3, 4], as schematically depicted
          in <b>Figure 2</b>.
          <br style="mso-special-character:line-break">
          <!--[if !supportLineBreakNewLine]--><br
            style="mso-special-character:line-break">
          <!--[endif]--><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">There is a great
          confusion in
          science and philosophy concerning the relation between the
          concepts of <i>information</i>
          and <i>entropy</i> as pointed out by Wicken [7].<span
            style="mso-spacerun:yes">  </span>A large part of this
          confusion may be traced
          back to the suggestions made by Schrödinger in 1944 [8] and
          others subsequently
          (e.g., von Neumann, Brillouin, etc.) that <i>order</i> can be
          measured as the <i>inverse
            of</i> <i>disorder</i> (D) and hence that information can
          be measured as
          negative entropy (see the second column in <b>Table 1</b>).<span
            style="mso-spacerun:yes">   </span><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
      <table class="MsoNormalTable"
style="margin-left:5.7pt;border-collapse:collapse;mso-table-layout-alt:fixed;
        mso-padding-alt:0cm 5.7pt 0cm 5.7pt" border="0" cellpadding="0"
        cellspacing="0">
        <tbody>
          <tr style="mso-yfti-irow:0;mso-yfti-firstrow:yes;height:.05pt">
            <td colspan="3" style="width:478.8pt;border:solid black
              1.0pt; mso-border-alt:solid black
              .35pt;background:#EEECE1;padding:0cm 5.7pt 0cm 5.7pt;
              height:.05pt" valign="top" width="638">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><b><span
                    style="mso-ansi-language:EN-GB" lang="EN-GB">Table
                    1.<span style="mso-spacerun:yes">  </span></span></b><span
                  style="mso-ansi-language:EN-GB" lang="EN-GB">Two
                  different views on the entropy-information relation.<span
                    style="mso-spacerun:yes">  </span>I<sub>P</sub> =
                  the Planckian information, Eq. (8.11).<span
                    style="mso-spacerun:yes">  </span>D = disorder.<span
                    style="mso-spacerun:yes">  </span>AUC = Area Under
                  the Curve; PDE = Planckian Distribution Equation, (1);
                  GLE = Gaussian-like Equation, (2). </span><span
                  style="font-size:11.0pt;font-family:
                  Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:EN-GB"
                  lang="EN-GB"><o:p></o:p></span></p>
            </td>
          </tr>
          <tr style="mso-yfti-irow:1;height:.05pt">
            <td style="width:95.75pt;border:solid black 1.0pt;
              border-top:none;mso-border-top-alt:solid black
              .35pt;mso-border-alt:solid black .35pt;
              background:#EEECE1;padding:0cm 5.7pt 0cm
              5.7pt;height:.05pt" valign="top" width="128">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><span
style="font-size:11.0pt;font-family:Calibri;mso-bidi-font-family:
                  Calibri;mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
            </td>
            <td style="width:171.0pt;border-top:none;border-left:
              none;border-bottom:solid black 1.0pt;border-right:solid
              black 1.0pt; mso-border-top-alt:solid black
              .35pt;mso-border-left-alt:solid black .35pt;
              mso-border-alt:solid black
              .35pt;background:#EEECE1;padding:0cm 5.7pt 0cm 5.7pt;
              height:.05pt" valign="top" width="228">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><b><span
                    style="color:#7030A0;mso-ansi-language:#000A">Schrödinger
                    (1944) </span></b><span
                  style="mso-ansi-language:#000A">[8]</span><span
                  style="font-size:11.0pt;
font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:#000A"><o:p></o:p></span></p>
            </td>
            <td style="width:212.05pt;border-top:none;border-left:
              none;border-bottom:solid black 1.0pt;border-right:solid
              black 1.0pt; mso-border-top-alt:solid black
              .35pt;mso-border-left-alt:solid black .35pt;
              mso-border-alt:solid black
              .35pt;background:#EEECE1;padding:0cm 5.7pt 0cm 5.7pt;
              height:.05pt" valign="top" width="283">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><b><span
                    style="color:#7030A0;mso-ansi-language:#000A">Ji
                    (2015) </span></b><span
                  style="mso-ansi-language:#000A">[1, 3]</span><span
                  style="font-size:11.0pt;
font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:#000A"><o:p></o:p></span></p>
            </td>
          </tr>
          <tr style="mso-yfti-irow:2;height:.05pt">
            <td style="width:95.75pt;border:solid black 1.0pt;
              border-top:none;mso-border-top-alt:solid black
              .35pt;mso-border-alt:solid black .35pt;
              background:#EEECE1;padding:0cm 5.7pt 0cm
              5.7pt;height:.05pt" valign="top" width="128">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><span
                  style="mso-ansi-language:#000A">Entropy (S)</span><span
                  style="font-size:
11.0pt;font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:
                  #000A"><o:p></o:p></span></p>
            </td>
            <td style="width:171.0pt;border-top:none;border-left:
              none;border-bottom:solid black 1.0pt;border-right:solid
              black 1.0pt; mso-border-top-alt:solid black
              .35pt;mso-border-left-alt:solid black .35pt;
              mso-border-alt:solid black
              .35pt;background:#EEECE1;padding:0cm 5.7pt 0cm 5.7pt;
              height:.05pt" valign="top" width="228">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><span
                  style="mso-ansi-language:#000A">S = k log D</span><span
                  style="font-size:
11.0pt;font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:
                  #000A"><o:p></o:p></span></p>
            </td>
            <td style="width:212.05pt;border-top:none;border-left:
              none;border-bottom:solid black 1.0pt;border-right:solid
              black 1.0pt; mso-border-top-alt:solid black
              .35pt;mso-border-left-alt:solid black .35pt;
              mso-border-alt:solid black
              .35pt;background:#EEECE1;padding:0cm 5.7pt 0cm 5.7pt;
              height:.05pt" valign="top" width="283">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><span
                  style="mso-ansi-language:#000A">S = k log D</span><span
                  style="font-size:
11.0pt;font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:
                  #000A"><o:p></o:p></span></p>
            </td>
          </tr>
          <tr style="mso-yfti-irow:3;mso-yfti-lastrow:yes;height:.05pt">
            <td style="width:95.75pt;border:solid black 1.0pt;
              border-top:none;mso-border-top-alt:solid black
              .35pt;mso-border-alt:solid black .35pt;
              background:#EEECE1;padding:0cm 5.7pt 0cm
              5.7pt;height:.05pt" valign="top" width="128">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><span
                  style="mso-ansi-language:#000A">Information (I)</span><span
                  style="font-size:
11.0pt;font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:
                  #000A"><o:p></o:p></span></p>
            </td>
            <td style="width:171.0pt;border-top:none;border-left:
              none;border-bottom:solid black 1.0pt;border-right:solid
              black 1.0pt; mso-border-top-alt:solid black
              .35pt;mso-border-left-alt:solid black .35pt;
              mso-border-alt:solid black
              .35pt;background:#EEECE1;padding:0cm 5.7pt 0cm 5.7pt;
              height:.05pt" valign="top" width="228">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><i><span
                    style="mso-ansi-language:#000A">- S = k log (1/D)<span
                      style="mso-spacerun:yes">   </span></span></i><span
                  style="font-size:11.0pt;
font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:#000A"><o:p></o:p></span></p>
            </td>
            <td style="width:212.05pt;border-top:none;border-left:
              none;border-bottom:solid black 1.0pt;border-right:solid
              black 1.0pt; mso-border-top-alt:solid black
              .35pt;mso-border-left-alt:solid black .35pt;
              mso-border-alt:solid black
              .35pt;background:#EEECE1;padding:0cm 5.7pt 0cm 5.7pt;
              height:.05pt" valign="top" width="283">
              <p class="MsoNormal"
                style="mso-layout-grid-align:none;text-autospace:none"><i><span
                    style="mso-ansi-language:EN-GB" lang="EN-GB">I<sub>P</sub>
                    = log<sub>2</sub> [AUC(PDE)/AUC(GLE)]</span></i><span
                  style="font-size:11.0pt;
font-family:Calibri;mso-bidi-font-family:Calibri;mso-ansi-language:EN-GB"
                  lang="EN-GB"><o:p></o:p></span></p>
            </td>
          </tr>
        </tbody>
      </table>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><b><span
            style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></b></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><span
            style="mso-spacerun:yes">  
          </span>As I pointed out in [9], the concept of “negative
          entropy” violates the <i>Third
            Law of Thermodynamics </i>and hence cannot be used to
          define “order” nor “information”.<span
            style="mso-spacerun:yes">  </span>However,<span
            style="mso-spacerun:yes"> 
          </span>Planckian information, I<sub>P<span
              style="mso-spacerun:yes">  </span></sub>,
          can be positive, zero, or negative, depending on whether
          AUC(PDE) is greater
          than, equal to, or less than AUC (GLE), respectively, leading
          to the conclusion
          that <o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><span
            style="mso-spacerun:yes">       </span>“Information can,
          but entropy cannot, be
          negative.”<span style="mso-spacerun:yes">                                     
          </span>(6)<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">Hence that <br
            style="mso-special-character:
            line-break">
          <!--[if !supportLineBreakNewLine]--><br
            style="mso-special-character:line-break">
          <!--[endif]--><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><span
            style="mso-spacerun:yes">         </span>“Information is
          not entropy.”<span style="mso-spacerun:yes">                                                                       
          </span>(7)<span style="mso-spacerun:yes">                                                             
          </span><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB"><span
            style="mso-spacerun:yes">   
          </span><span style="mso-spacerun:yes">           </span><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="mso-ansi-language:EN-GB" lang="EN-GB">I recommended in
          [10] that Statement
          (6) or (7) be referred to as the <b>First Law of Informatics</b>
          (FLI).<span style="mso-spacerun:yes">  </span>It is hoped
          that FLI will help clarify the
          decades-long confusions plaguing the fields of informatics,
          computer science,
          thermodynamics, biology, and philosophy. <b><o:p></o:p></b></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><b><span
            style="mso-ansi-language:EN-GB" lang="EN-GB"><span
              style="mso-spacerun:yes">  
            </span></span></b><span style="mso-ansi-language:EN-GB"
          lang="EN-GB">Another way
          of supporting the thesis that <i>information </i>and <i>entropy</i>
          are not
          equivalent is invoke<span style="mso-spacerun:yes">  </span>the
          notion of <i>irreducible
            triadic relations</i> (ITR) of Peirce (1839-1914) [11],
          according to whom the
          sign (i.e., anything that stands for something other than
          itself) is
          irreducible triad of <i>object</i>, <i>representamen</i>
          (also called <i>sign</i>)
          and <i>interpretant.<span style="mso-spacerun:yes">  </span></i>The
          irreducible
          triadic relation (ITR) can be represented as a 3-node network
          shown in <b>Figure
            3</b>.<span style="mso-spacerun:yes">  </span>The <i>communication
            system</i>
          of <st1:place w:st="on">Shannon</st1:place> is also
          irreducibly triadic, since
          it can be mapped to the sign triad as indicated in Figurer 3.<span
            style="mso-spacerun:yes">   </span>Entropy (in the sense of
          <st1:place w:st="on">Shannon</st1:place>’s
          communication theory) is one of the three <i>nodes</i> and
          Information (in the
          sense of Peircean semiotics) is one of the three <i>edges</i>.<span
            style="mso-spacerun:yes">  </span>Clearly, nodes and edges
          are two different
          classes of entities, consistent with FLI, Statement (7).</span><b><span
            style="mso-ansi-language:#000A"><o:p></o:p></span></b></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><b><span
            style="mso-ansi-language:#000A"><o:p> </o:p></span></b></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><b><span
            style="mso-ansi-language:EN-GB" lang="EN-GB">Figure 3.<span
              style="mso-spacerun:yes">  </span></span></b><span
          style="mso-ansi-language:
          EN-GB" lang="EN-GB">The isomorphism between <st1:place
            w:st="on">Shannon</st1:place>’s
          communication system (<i>the source-message-receiver triad</i>)
          and Peirce’s
          semiotic system (<i>the object-sign-interpretant triad</i>),
          the “interpretant”
          being defined as the effect that a sign has on the mind of an
          interpreter.<span style="mso-spacerun:yes">  </span>The
          arrows read “determines” or
          “constrains”.<span style="mso-spacerun:yes">  </span><i>f</i><span
            style="mso-spacerun:yes">  </span>= sign/message
          production, g = sign/message
          interpretation; <i>h </i>= information flow, or
          correspondence. The diagram is
          postulated to be equivalent to the commutative triangle of the
          category theory
          [12], i.e., f x g = h. <o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><b><span
            style="mso-ansi-language:EN-GB" lang="EN-GB"><o:p> </o:p></span></b></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><b><span
style="background:white;mso-highlight:white;mso-ansi-language:EN-GB"
            lang="EN-GB">References:</span></b><span
          style="background:white;mso-highlight:white;mso-ansi-language:EN-GB"
          lang="EN-GB">
          <br>
          <span style="mso-spacerun:yes">   </span>[1] J<span
            style="color:#333333">i, S.
            (2015). </span></span><span
          style="color:#6AB446;background:white;
          mso-highlight:white;mso-ansi-language:#000A"><a
href="http://www.conformon.net/wp-content/uploads/2016/09/PDE_Vigier9.pdf"><span
              style="color:#6AB446;mso-ansi-language:EN-GB" lang="EN-GB">PLANCKIAN
              INFORMATION
              (IP): A NEW MEASURE OF ORDER IN ATOMS, ENZYMES, CELLS,
              BRAINS, HUMAN SOCIETIES,
              AND THE COSMOS. </span></a></span><span
          style="color:#333333;
          background:white;mso-highlight:white;mso-ansi-language:EN-GB"
          lang="EN-GB"> In: <i>Unified
            Field Mechanics: Natural Science beyond the Veil of
            Spacetime</i> (Amoroso,
          R., Rowlands, P., and Kauffman, L. eds.), World Scientific,
          New <st1:place w:st="on">Jersey</st1:place>, 2015, pp.
          579-589).<span style="mso-spacerun:yes">  </span>PDF at </span><span
          style="background:white;
          mso-highlight:white;mso-ansi-language:#000A"><a
href="http://www.conformon.net/wp-content/uploads/2016/09/PDE_Vigier9.pdf"><span
              style="mso-ansi-language:EN-GB" lang="EN-GB">http://www.conformon.net/wp-content/uploads/2016/09/PDE_Vigier9.pdf</span></a></span><span
style="background:white;mso-highlight:white;mso-ansi-language:EN-GB"
          lang="EN-GB"><br>
          <span style="mso-spacerun:yes">   </span>[1a] Ji, S. (2016).<span
            style="mso-spacerun:yes">  </span>Planckian Information
          (I_P): A Measure of the
          Order in Complex Systems.<span style="mso-spacerun:yes">  </span>In:
          Information and Complexity (M. Burgin and Calude, C. S.,
          eds.), World
          Scientific, New <st1:place w:st="on">Jersey</st1:place>. <span
            style="mso-spacerun:yes"> </span><br>
          <span style="mso-spacerun:yes">   </span>[2] Ji, S. (2012).<span
            style="mso-spacerun:yes">  </span>Molecular Theory of the
          Living Cell:
          Concepts, Molecular Mechanisms and Biomedical Applications.<span
            style="mso-spacerun:yes">  </span>Springer, <st1:place
            w:st="on"><st1:state w:st="on">New York</st1:state></st1:place>.<span
            style="mso-spacerun:yes"> 
          </span>Chapters 11 and 12.<span style="mso-spacerun:yes">  </span>PDF
          at
          <a class="moz-txt-link-freetext" href="http:/www.conformon.net">http:/www.conformon.net</a> under Publications > Book Chapters.<br>
          <span style="mso-spacerun:yes">   </span>[3] <span
            style="color:#222222">Ji, S.
            (2015).  Planckian distributions in molecular machines,
            living cells, and
            brains: The wave-particle duality in biomedical sciences.  <i>Proceedings
              of the International Conference on Biology and Biomedical
              Engineering.</i> 
            <st1:city w:st="on"><st1:place w:st="on">Vienna</st1:place></st1:city>,
            March
            15-17, pp. 115-137.  Retrievable from </span><a class="moz-txt-link-freetext" href="http://www.inase.org/library/2015/vienna/BICHE.pdf">http://www.inase.org/library/2015/vienna/BICHE.pdf</a><br>
          <span style="mso-spacerun:yes">   </span></span><span
          style="background:white;mso-highlight:white;mso-ansi-language:
          #000A">............</span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="background:white;mso-highlight:white;mso-ansi-language:
          #000A">See original file at: </span><br>
        <a class="moz-txt-link-freetext"
href="http://fis.sciforum.net/wp-content/uploads/sites/2/2014/11/Planckian_information.pdf">http://fis.sciforum.net/wp-content/uploads/sites/2/2014/11/Planckian_information.pdf</a></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="background:white;mso-highlight:white;mso-ansi-language:
          #000A"><br>
        </span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
          style="background:white;mso-highlight:white;mso-ansi-language:
          #000A">S. Ji, 03/21/2017<o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
style="color:#222222;background:white;mso-highlight:white;mso-ansi-language:#000A"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
style="color:#222222;background:white;mso-highlight:white;mso-ansi-language:#000A">--------------------------------------------------<br
            style="mso-special-character:line-break">
          <!--[if !supportLineBreakNewLine]--><br
            style="mso-special-character:line-break">
          <!--[endif]--><o:p></o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
style="color:#222222;background:white;mso-highlight:white;mso-ansi-language:#000A"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
style="color:#222222;background:white;mso-highlight:white;mso-ansi-language:#000A"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
style="color:#222222;background:white;mso-highlight:white;mso-ansi-language:#000A"><o:p> </o:p></span></p>
      <p class="MsoNormal"
        style="mso-layout-grid-align:none;text-autospace:none"><span
style="color:#222222;background:white;mso-highlight:white;mso-ansi-language:#000A"><span
            style="mso-spacerun:yes"> </span><o:p></o:p></span></p>
      <p class="MsoNormal"><o:p> </o:p></p>
    </o:smarttagtype>
    <pre class="moz-signature" cols="72">-- 
-------------------------------------------------
Pedro C. Marijuán
Grupo de Bioinformación / Bioinformation Group
Instituto Aragonés de Ciencias de la Salud
Centro de Investigación Biomédica de Aragón (CIBA)
Avda. San Juan Bosco, 13, planta 0
50009 Zaragoza, Spain
Tfno. +34 976 71 3526 (& 6818)
<a class="moz-txt-link-abbreviated" href="mailto:pcmarijuan.iacs@aragon.es">pcmarijuan.iacs@aragon.es</a>
<a class="moz-txt-link-freetext" href="http://sites.google.com/site/pedrocmarijuan/">http://sites.google.com/site/pedrocmarijuan/</a>
------------------------------------------------- </pre>
  </body>
</html>