<div><br><p class="MsoNormalCxSpFirst" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">Dear FISers, <o:p></o:p></span></p>

<p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">In touch with Ludwig Wittgenstein's favourite example, let's play a chess game.  </span></p><p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">Imagine that the chessboard is the
information.  <o:p></o:p></span></p>

<p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">We have the whites, e.g., Jaynes, Logan, Kauffmann, Marijuan (more or less!), Loet, Chu-Hsi (Zhu Xi)</span><span style="line-height: 107%; font-size: 14px;"><font color="#000000">, </font></span><span style="font-family: "Times New Roman", serif; font-size: 10pt;">Susskind's account of loss of information in black holes.  (I also side with the whites, but I did not dare to put my name together with the great scientists I quoted!).  </span></p>

<p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">And the blacks, e.g. Brillouin, Collier, Wheeler, Murray Gell-Mann,
Lloyd, Layzer, Muller,  Rizzo, </span><span style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US">Leydesdorff, Hawkins' account of absence of  loss of  information in black holes.   They are all first-rank scientists.    </span><span style="font-size:10.0pt;
line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:EN-US"><o:p></o:p></span></p>

<p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">Whites do not believe very much in the foremost role of information in our world,
blacks do.  <o:p></o:p></span></p>

<p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">Who wins the game? Nobody wins. 
The two players are too strong and well-grounded to be defeated, and, weirdly, both logical and experimental results were not decisive in order to produce the winner.   <o:p></o:p></span></p>

<p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">There is just a possibility to tackle the issue and see who wins: to change the rules of the chess game and the shape of the chessboard.  The 2D chessboard must become… a
3D chessboard.  Equipped with symmetries.<o:p></o:p></span></p>

<p class="MsoNormalCxSpMiddle" style="text-align:justify"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US"><o:p> </o:p></span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">The following text comes from our most important (according to me, of course) published (topological) paper.  You can find the whole manuscript (with the
mentioned references and the proper mathematical treatment) here: <o:p></o:p></span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">http://arturotozzi.webnode.it/products/a-topological-approach-unveils-system-invariancesand-broken-symmetries-in-the-brain/</span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">Symmetry is a type of invariance occurring when a structured object does
not change under a set of transformations (Weyl).  Symmetries hold the key
to understanding many of nature’s intimate secrets, because they are the most
general feature of countless types of systems. Huge swathes of mathematics,
physics and biology, including the brain, can be explained in terms of the
underlying invariance of the structures under investigation.  In physics, symmetries can be “broken”.  Symmetry breaking consists of sudden change
in the set of available states: the whole phase space is partitioned into non-overlapping
regions (Roldàn, 2014), so that small fluctuations acting on a system cross a
critical point and decide which branch of a bifurcation is taken. In
particular, in spontaneous symmetry breaking (SSB), the underlying laws are
invariant under a symmetry transformation, but the system as a whole changes.
SSB is a process which allows a system cast in a symmetrical state to end up in
an asymmetrical one.   SSB describes
systems where the equations of motion or the Lagrangian obey certain
invariances, but the lowest-energy solutions do not exhibit them.  “Hidden” is perhaps a better term than
“broken”, because the symmetry is always there in such equations (Higgs). In
case of finite systems with metastable states, the confinement is not strict:
the system can “jump” from a region to another (Roldàn). Concerning the brain,
that is the main issue of our FIS discussion, its activity</span><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-GB;mso-bidi-font-weight:
bold"> is an example of an open system, </span><span style="font-size:10.0pt;
line-height:107%;font-family:"Times New Roman",serif;mso-fareast-font-family:
"Times New Roman";mso-ansi-language:EN-US;mso-bidi-font-weight:bold">partly
stochastic due to intrinsic fluctuations, but containing islands at the edge of
the chaos, </span><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";
mso-ansi-language:EN-GB;mso-bidi-font-weight:bold">which maintains homoeostasis
or allostasis in the face of environmental fluctuations (Friston 2010).   </span><span style="font-size:10.0pt;
line-height:107%;font-family:"Times New Roman",serif;mso-fareast-font-family:
"Times New Roman";mso-ansi-language:EN-US;mso-bidi-font-weight:bold">The brain
retains the characteristics of a complex, non-linear system with
non-equilibrium dynamics (Fraiman et. al., 2012), equipped with random walks
(Afraimovich et.al., 2013); it operates at the edge of chaos (Tognoli et.al.,
2014;) and lives near a metastable state of second-order phase transition,
between micro- and macro-levels (</span><span lang="EN-GB" style="font-size:10.0pt;
line-height:107%;font-family:"Times New Roman",serif;mso-fareast-font-family:
"Times New Roman";mso-ansi-language:EN-GB;mso-bidi-font-weight:bold">Beggs
et.al., 2012</span><span style="font-size:10.0pt;line-height:107%;font-family:
"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";mso-ansi-language:
EN-US;mso-bidi-font-weight:bold">), characterized by infinite correlation
length, countless dimensions, slight non-ergodicity, attractors </span><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-GB;mso-bidi-font-weight:
bold">(Deco et.al., 2012)</span><span style="font-size:10.0pt;line-height:107%;
font-family:"Times New Roman",serif;mso-fareast-font-family:"Times New Roman";
mso-ansi-language:EN-US;mso-bidi-font-weight:bold"> and universal power laws,
testified by the presence of spontaneous neuronal avalanches (De
Arcangelis).  </span><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-GB;mso-bidi-font-weight:
bold"><o:p></o:p></span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">In such a multifaceted framework, the Borsuk-Ulam theorem is
useful.  This theorem tells us that, </span><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-ansi-language:EN-GB">if a sphere is mapped continuously into a plane set,
there is at least one pair of antipodal points having the same image; that is,
they are mapped in the same point of the plane </span><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-GB">(Beyer and
Zardecki, 2004). </span><span lang="EN-GB" style="font-size:10.0pt;line-height:
107%;font-family:"Times New Roman",serif;mso-ansi-language:EN-US"> </span><span style="font-size:10.0pt;
line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:EN-US">Bain
symmetries can be studied in a topological fashion, i.e. in terms of antipodal
points on a hypersphere.  </span><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-ansi-language:EN-GB">If we enclose symmetries</span><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US">, equipped with antipodal self-similar points, into the abstract spaces
of <i>n</i>-spheres, they can be evaluated
in guise of projections on <i>S<sup>n-1</sup></i>,
where they stand for the broken symmetry.  This means that brain symmetries, hidden at a
lower level, are detectable at a higher level of analysis, and vice versa.  In other words, a symmetry break occurs when
the symmetry is present at one level of observation, but “hidden” at another
level.  <o:p></o:p></span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span lang="EN-GB" style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-ansi-language:EN-GB">It must be emphasized that t</span><span style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-ansi-language:EN-US">he symmetries are widespread at every level of
organization and <u><b>may be regarded as the most general feature of systems, perhaps
more general than free-energy and entropy constraints too</b></u>.  Indeed, recent data suggest that thermodynamic
requirements have close relationships with symmetries.  The novel, interesting observation that entropy
production is strictly correlated with symmetry breaking in quasi-static
processes paves the way to use system invariances for the estimation of the brain
metastable states’ free-energy and the energy requirements of neural computations
and information processing (Roldán 2014). 
Thus, giving insights into symmetries provides a very general approach
to every kind of brain function and dynamics. 
</span><span style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US">A</span><span style="font-size:10.0pt;line-height:107%;font-family:"Times New Roman",serif;
mso-fareast-font-family:Galliard-Roman;mso-ansi-language:EN-US"> shift in
conceptualizations is evident in a brain </span><span style="font-size:10.0pt;
line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:EN-US">theory
of broken symmetries based on a BUT approach</span><span style="font-size:10.0pt;
line-height:107%;font-family:"Times New Roman",serif;mso-fareast-font-family:
Galliard-Roman;mso-ansi-language:EN-US">: the symmetries, in this framework,
are hidden in a dimension and restored in a dimension higher, and vice versa.  <o:p></o:p></span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-fareast-font-family:
Galliard-Roman;mso-ansi-language:EN-US"><o:p> </o:p></span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-fareast-font-family:
Galliard-Roman;mso-ansi-language:EN-US"><o:p> </o:p></span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-fareast-font-family:
Galliard-Roman;mso-ansi-language:EN-US">Coming back to our chessboard, this
means that information can be studied in terms of systems’ symmetries and changes
in dimensions, rather than in terms of entropies and energetic gradient descents.
  An object (on an event) embedded in an environment encompasses
a certain amount of information, but such information increases when you add a further
dimension to the environment (NOTE: non necessarily a spatial dimension, but also other possible ones, such as an increase of complexity).  Indeed, a
dimension more gives you a coordinate more, and therefore more information.  To make the usual example, the 2D shadow of a
cat encompasses less information than a 3D cat.  </span><span style="font-family: "Times New Roman", serif; font-size: 10pt;">Some authors start from a very low number of dimensions (e.g., the holographic Universe of t’Hooft and Susskind),
others from an high number (claims dating back to Spinoza and Kant and going through our Universe made of eleven-dimensional Kaluza-Klein manifolds and subsequent decrease of dimensions, until our 3D plus time perceivable environment).  It does not matter: when projecting among
levels, information is always a function of the number of dimensions.  </span></p><p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-family: "Times New Roman", serif; font-size: 10pt;">In such a framework, <u><b>the role of energy is different from the role of information</b></u>: the energy is something "injected" from the external "environment" into the system, in order to produce the change of coordinates into the system; on the other side, the changes of information can be detected into the system, and depend on the energy just </span><span style="font-family: "Times New Roman", serif; font-size: 13.3333px;">indirectly (second-hand)</span><span style="font-family: "Times New Roman", serif; font-size: 10pt;">.  In other words: </span></p><p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-family: "Times New Roman", serif; font-size: 10pt;">a)  the system's change of dimensions  dictates the change in information, while</span></p><p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-family: "Times New Roman", serif; font-size: 10pt;">b) the changes in energy dictate the projective mechanisms that allow the changes in system's dimensions.  </span></p><p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-family: "Times New Roman", serif; font-size: 10pt;">It is a subtle, but foremost difference, that can be highlighted just taking into account a very general topological framework.  This is one of the examples of the importance of the  topological meta-language in the study of science foundations.   </span></p>

<p class="MsoNormal" style="margin-bottom:0cm;margin-bottom:.0001pt;text-align:
justify;mso-layout-grid-align:none;text-autospace:none"><span style="font-size:
10.0pt;line-height:107%;font-family:"Times New Roman",serif;mso-ansi-language:
EN-US"><o:p> </o:p></span></p>

<p class="MsoNormalCxSpMiddle"><span style="font-size:10.0pt;line-height:107%;
font-family:"Times New Roman",serif;mso-ansi-language:EN-US"><o:p> </o:p></span></p><p class="MsoNormalCxSpFirst" style="margin-top:12.0pt;margin-right:0cm;
margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;
line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span style="font-size: 14px; line-height: normal; text-align: start;"><font face="courier new, monospace"><b>Arturo Tozzi</b></font></span></p><p class="MsoNormalCxSpFirst" style="margin-top:12.0pt;margin-right:0cm;
margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;
line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span style="line-height: 115%;"><font face="courier new, monospace">AA Professor Physics, University North Texas</font></span></p><p class="MsoNormalCxSpFirst" style="margin-top:12.0pt;margin-right:0cm;
margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;
line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span style="font-size: 14px; line-height: normal; text-align: start;"><font face="courier new, monospace">Pediatrician ASL Na2Nord, Italy</font></span></p><p class="MsoNormalCxSpFirst" style="margin-top:12.0pt;margin-right:0cm;
margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;
line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span style="font-size: 14px; line-height: normal; text-align: start;"><font face="courier new, monospace">Comput Intell Lab, University Manitoba</font></span></p><p class="MsoNormalCxSpFirst" style="margin-top:12.0pt;margin-right:0cm;
margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;
line-height:115%;mso-layout-grid-align:none;text-autospace:none"><font face="courier new, monospace"><a href="http://arturotozzi.webnode.it/" style="font-size: 14px; color: rgb(5, 68, 126); line-height: normal; text-align: start;">http://arturotozzi.webnode.it/</a><span style="font-size: 14px; line-height: normal; text-align: start;"> </span></font><br></p></div><br>