<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=utf-8">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-forward-container">(sorry, the problems continue,
      seemingly, and I have to re-enter the messages--Pedro)<br>
---------------------------------------------------------------------------------------------------------------------------<br>
      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      <div>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Dear Jerry,</span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Thanks for
            the intriguing questions!</span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">I thank our guest,
            Pedro Marijuan, for giving us the
            opportunity to talk with such high-ranked scientists.  </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span
style="font-size:10.5pt;font-family:'Arial',sans-serif;mso-fareast-font-family:'Times
            New Roman';mso-ansi-language:EN-US"> Let’s start!</span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><i><span
style="font-size:10.5pt;font-family:'Arial',sans-serif;mso-fareast-font-family:'Times
              New Roman';mso-ansi-language:EN-US">The questions raised
              in this post are highly
              provocative.  From the perspective of physical
              phenomenology, it is
              necessary to identify corresponding illations between the
              electric fields of
              brain dynamics (such as EEG patterns) and the mathematics
              of electric fields /
              electro-magnetism.  It goes without
              saying that such correspondences must associate the
              measured quantities with
              the theoretical quantities.  In other words, the units of
              measurements of
              “brain activity" should be associated with Maxwell’s
              equations.</span></i><span
style="font-size:10.5pt;font-family:'Arial',sans-serif;mso-fareast-font-family:
            'Times New Roman';mso-ansi-language:EN-US"></span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Are we
            really sure that this proposition is true? 
          </span><span style="font-size:10.0pt;font-family:'Times New
Roman',serif;letter-spacing:.1pt;background:#FCFCFC;mso-ansi-language:EN-US">How
            does
            central nervous system process information? Current theories
            are based on two
            tenets: (a) information is transmitted by action potentials,
            the language by
            which neurons communicate with each other—and (b)
            homogeneous neuronal
            assemblies of cortical circuits operate on these neuronal
            messages where the
            operations are characterized by the intrinsic connectivity
            among neuronal
            populations. In this view, the size and time course of any
            spike is stereotypic
            and the information is restricted to the temporal sequence
            of the spikes;
            namely, the “neural code”. However, an increasing amount of
            novel data point
            towards an alternative hypothesis: (a) the role of neural
            code in information
            processing is overemphasized. Instead of simply passing
            messages, action potentials
            play a role in dynamic coordination at multiple spatial and
            temporal scales,
            establishing network interactions across several levels of a
            hierarchical
            modular architecture, modulating and regulating the
            propagation of neuronal
            messages. (b) Information is processed at all levels of
            neuronal infrastructure
            from macromolecules to population dynamics. For example,
            intra-neuronal
            (changes in protein conformation, concentration and
            synthesis) and
            extra-neuronal factors (extracellular proteolysis, substrate
            patterning, myelin
            plasticity, microbes, metabolic status) can have a profound
            effect on neuronal
            computations. This means molecular message passing may have
            cognitive
            connotations. This essay introduces the concept of
            “supramolecular chemistry”,
            involving the storage of information at the molecular level
            and its retrieval,
            transfer and processing at the supramolecular level, through
            transitory
            non-covalent molecular processes that are self-organized,
            self-assembled and
            dynamic. Finally, we note that the cortex comprises
            extremely heterogeneous
            cells, with distinct regional variations, macromolecular
            assembly, receptor
            repertoire and intrinsic microcircuitry. This suggests that
            every neuron (or
            group of neurons) embodies different molecular information
            that hands an
            operational effect on neuronal computation.</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family: 'Times New
            Roman';mso-ansi-language:EN-US"></span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">For further
            details, see: </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US"><a
              href="http://link.springer.com/article/10.1007/s11571-015-9337-1"
              target="_blank">http://link.springer.com/article/10.1007/s11571-015-9337-1</a></span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><i><span
style="font-size:10.5pt;font-family:'Arial',sans-serif;mso-fareast-font-family:'Times
              New Roman';mso-ansi-language:EN-US"> In the philosophy of
              science, this is the basic
              distinction between traditional mathematical narratives as
              pure abstractions
              and APPLIED mathematical theories of explanations of
              scientific facts.  </span></i></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Pursuing Quine’s
            naturalized epistemology, we are aware that we need to make
            testable
            previsions, in order to “link” mathematical theories with
            explanations of
            scientific facts.  This is exactly what
            we (try to) do. </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">The best
            example is the following, that shows how a novel approach
            might lead to
            unpredictable testable results: </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
Roman',serif;letter-spacing:.1pt;background:#FCFCFC;mso-ansi-language:EN-US">Current
            advances in neurosciences deal with the functional
            architecture of the central
            nervous system, paving the way for general theories that
            improve our
            understanding of brain activity. From topology, a strong
            concept comes into
            play in understanding brain functions, namely, the 4D space
            of a “hypersphere’s
            torus”, undetectable by observers living in a 3D world. The
            torus may be compared
            with a video game with biplanes in aerial combat: when a
            biplane flies off one
            edge of gaming display, it does not crash but rather it
            comes back from the
            opposite edge of the screen. Our thoughts exhibit similar
            behaviour, i.e. the
            unique ability to connect past, present and future events in
            a single, coherent
            picture as if we were allowed to watch the three screens of
            past-present-future
            “glued” together in a mental kaleidoscope. Here we
            hypothesize that brain
            functions are embedded in a imperceptible fourth spatial
            dimension and propose
            a method to empirically assess its presence. Neuroimaging
            fMRI series can be
            evaluated, looking for the topological hallmark of the
            presence of a fourth
            dimension. Indeed, there is a typical feature which reveal
            the existence of a
            functional hypersphere: the simultaneous activation of areas
            opposite each
            other on the 3D cortical surface. Our
            suggestion—substantiated by recent
            findings—that brain activity takes place on a closed,
            donut-like trajectory
            helps to solve long-standing mysteries concerning our
            psychological activities,
            such as mind-wandering, memory retrieval, consciousness and
            dreaming state.</span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">For further
            details, see: </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US"><a
              href="http://link.springer.com/article/10.1007%2Fs11571-016-9379-z"
              target="_blank"><span style="color:windowtext">http://link.springer.com/article/10.1007%2Fs11571-016-9379-z</span></a></span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">We puzzled
            the neuroscientific community, giving rise to a hot debate:
          </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US"><a
href="http://blogs.discovermagazine.com/neuroskeptic/2016/06/11/the-four-dimensional-brain/#.WDvjihrhCUm"
              target="_blank"><span style="color:windowtext">http://blogs.discovermagazine.com/neuroskeptic/2016/06/11/the-four-dimensional-brain/#.WDvjihrhCUm</span></a></span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US"> </span>
        </p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Until we
            found the smoking gun: </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size: 10pt;font-family: 'Times New
            Roman', serif;background-image: initial;background-position:
            initial;background-size: initial;background-repeat:
            initial;background-attachment: initial;background-origin:
            initial;background-clip: initial;">We introduce a novel
            method for the
            measurement of information in fMRI neuroimages, i.e.,
            nucleus clustering's
            Renyi entropy derived from strong proximities in
            feature-based Voronoi
            tessellations, e.g., maximal nucleus clustering (MNC). We
            show how MNC is a
            novel, fast and inexpensive image-analysis technique,
            independent from the
            standard blood-oxygen-level dependent signals, which
            facilitates the objective
            detection of hidden temporal patterns of entropy/information
            in zones of fMRI
            images generally not taken into account by the subjective
            standpoint of the
            observer. In order to evaluate the potential applications of
            MNC, we looked for
            the presence of a fourth dimension's distinctive hallmarks
            in a temporal
            sequence of 2D images taken during spontaneous brain
            activity. Indeed, recent
            findings suggest that several brain activities, such as
            mind-wandering and
            memory retrieval, might take place in the functional space
            of a four
            dimensional hypersphere, which is a double donut-like
            structure undetectable in
            the usual three dimensions. We found that the Renyi entropy
            is higher in MNC
            areas than in the surrounding ones, and that these temporal
            patterns closely
            resemble the trajectories predicted by the possible presence
            of a hypersphere
            in the brain.</span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">For further
            details, see (this manuscript is not yet published, but it
            is in advanced
            review): </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US"><a
              href="http://biorxiv.org/content/early/2016/08/30/072397"
              target="_blank">http://biorxiv.org/content/early/2016/08/30/072397</a></span></p>
        <p
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;text-align:justify;line-height:normal"><b><i><span
                style="font-size:10.0pt;font-family:'Times New
                Roman',serif;mso-fareast-font-family: 'Times New
                Roman';mso-ansi-language:EN-US">Concernig your answers
                to our
                questions, I may summarize our response in this way: </span></i></b></p>
        <p
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;text-align:justify;line-height:normal"><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US;mso-bidi-font-weight:bold">A</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family: 'Times New
            Roman';mso-ansi-language:EN-US">s we stated above, the
            bipolarity of
            electrical particles is just one one the countless
            functional phenomena
            occurring in the brain.  See, for
            example, our still unpublished manuscript, where we </span><span
            style="font-size: 10pt;font-family: 'Times New Roman',
            serif;background-image: initial;background-position:
            initial;background-size: initial;background-repeat:
            initial;background-attachment: initial;background-origin:
            initial;background-clip: initial;">assess cortical activity
            in terms of McKean-Vlasov
            equations, derived from the classical Vlasov equations for
            plasma</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family: 'Times New
            Roman';mso-ansi-language:EN-US">:  </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US"><a
              href="http://vixra.org/abs/1610.0014" target="_blank">http://vixra.org/abs/1610.0014</a></span></p>
        <span style="font-size:10.0pt;font-family:'Times New
          Roman',serif;mso-fareast-font-family:'Times New
          Roman';mso-ansi-language:EN-US"> </span>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">From a
            philosophical point of view, we pursue the William Bechtel’s
            approach of a
            mechanistic explanation in psychology, that goes from
            reduction back to higher
            levels.  </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US"><a
              href="http://www.tandfonline.com/doi/abs/10.1080/09515080903238948"
              target="_blank"><span style="color:windowtext">http://www.tandfonline.com/doi/abs/10.1080/09515080903238948</span></a></span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Becthel
            states that </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language:EN-US">the components of a
            mechanism interact in complex ways
            involving positive and negative feedback and that the
            organization often
            exhibits highly interactive local networks linked by a few
            long-range
            connections (small-worlds organization) and power law
            distributions of
            connections.</span>  This means that, when
          looking down is combined with looking around and up,
          mechanistic research
          results in an integrated, multi-level perspective. </p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><i><span style="font-size:10.0pt;font-family:'Times
              New Roman',serif;mso-fareast-font-family:'Times New
              Roman';mso-ansi-language:EN-US">But the main question here
              is: </span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">w</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language:EN-GB" lang="EN-GB">hat does
            a topologic reformulation add in the </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">evaluation of the
            nervous processes? 
            BUT and its extensions provide a methodological approach
            which makes it
            possible for us to study experience in terms of projections
            from real to
            abstract phase spaces.  </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language:EN-GB" lang="EN-GB">The
            importance of projections between environmental
            spaces, where objects lie, and brain phase spaces, where
            mental operations take
            place, is also suggested by a recent paper, which provides a
            rigorous way of
            measuring distance on concave neural manifolds (<a
href="http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002400"
              target="_blank">http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002400</a>). 
            The </span><span style="font-size:10.0pt;font-family:'Times
            New Roman',serif;mso-ansi-language:EN-US">real, measurable
            nervous activity can be described in terms of paths
            occurring on n-spheres. </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language:EN-GB" lang="EN-GB">It leads
          </span><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language:EN-US">to a consideration
            of affinities among nervous signals, characterized as
            antipodal points on
            multi-dimensional spheres embedded in abstract spaces.  To
            provide an example, embedding brain
            activities in n-spheres allows the quantification of
            geometric parameters, such
            as angles, lengths, and so on, that </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">could be useful in
            neuroimaging data optimization. BUT
            and its </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">ingredients
            can be modified in different guises, in order to assess a
            wide range of </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family: 'Times New
            Roman';mso-ansi-language:EN-US">nervous functions.  Although
            this field is nearly novel and still
            in progress, with several unpublished findings, we may
            provide some examples</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">.  Such a
            methodological approach
            has been proved useful in the evaluation of brain
            symmetries, which allow us to
            perform coarse- or fine-grained evaluation of fMRI images
            and to assess the
            relationships, affinities, shape-deformations and closeness
            among BOLD activated
            areas (<a
              href="http://onlinelibrary.wiley.com/doi/10.1002/jnr.23720/abstract"
              target="_blank">http://onlinelibrary.wiley.com/doi/10.1002/jnr.23720/abstract</a>). 
          </span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Further, BUT
            has been proved useful in the evaluation of cortical
            histological images previoulsy
            treated with Voronoi tessellation (<a
href="http://www.sciencedirect.com/science/article/pii/S0304394016301999"
              target="_blank">http://www.sciencedirect.com/science/article/pii/S0304394016301999</a>).</span></p>
        <p style="text-align:justify"><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">A wide range of brain
            dynamics, ranging from neuronal membrane activity
            to spikes, from seizures to spreading depression, lie along
            a continuum of the
            repertoire of the neuronal nonlinear activities which may be
            of substantial
            importance in enabling our understanding of central nervous
            system function and
            in the control of pathological neurological states. 
            Nonlinear dynamics are frequently studied
            through logistic maps equipped with Hopf bifurcations, where
            intervals are
            dictated by Feigenbaum constants.  Tozzi
            and Peters (2016, quoted above) introduced an approach that
            offers an
            explanation of </span><span
            style="font-size:10.0pt;line-height: 107%;font-family:'Times
            New Roman',serif;mso-ansi-language:EN-GB" lang="EN-GB">nervous
          </span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-ansi-language:EN-US">nonlinearity</span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-fareast-font-family: 'Times New
            Roman';mso-ansi-language:EN-US"> and </span><span
            style="font-size: 10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-ansi-language: EN-US">Hopf bifurcations
            in terms of algebraic topology.  </span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-fareast-font-family: 'Times New
            Roman';mso-ansi-language:EN-US">Hopf bifurcation </span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">transformations
            (the antipodal points) </span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">can be described as paths or
            trajectories on abstract
            spheres embedded in n-spheres where n stands for </span><span
            style="font-size: 10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-ansi-language: EN-US">the Feigenbaum
            constant’s irrational number</span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">.</span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-ansi-language:EN-US"> Although the
            paper takes into account just </span><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Hopf
            bifurcations among the brain nonlinear dynamics, this is
            however a starting
            point towards the “linearization” of other nonlinear
            dynamics in the
            brain.  </span><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">In sum, BUT makes it
            possible for us to evaluate nonlinear brain
            dynamics, which occur during knowledge acquisition and
            processing, through much
            simpler linear techniques.  </span></p>
        <p style="text-align:justify"><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">BUT and its variants
            are not just a <i>methodological</i>
            approach, but also display a <i>physical</i>,
            quantifiable counterpart.  To make an
            example, although anatomical and functional relationships
            among cortical
            structures are fruitfully studied, <i>e.g.</i>,
            in terms of dynamic causal modelling, pairwise entropies and
            temporal-matching
            oscillations, nevertheless <i>proximity</i>
            among brain signals adds information that has the potential
            to be
            operationalized. For example, based on the ubiquitous
            presence of antipodal cortical
            zones with co-occuring BOLD activation, it has been recently
            suggested that
            spontaneous brain activity might display donut-like
            trajectories (Tozzi and
            Peters 2016, see above).</span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language:EN-US">BUT allows the
            evaluation of energetic nervous requirements
            too.  </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family: 'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">There exists a
            physical link between
            the </span><span style="font-size:10.0pt;font-family:'Times
            New Roman',serif;mso-ansi-language:EN-US">two spheres <i>S<sup>n</sup></i>
            and <i>S<sup>n-1 </sup></i></span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">and </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">their energetic
            features.  When </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">two
            antipodal functions </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language:EN-US">a</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB"> n-sphere </span><i><span
              style="font-size:10.0pt;font-family:'Times New
              Roman',serif;mso-ansi-language: EN-US">S<sup>n</sup></span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">, standing for
            symmetries,</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US" lang="EN-GB"> </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">project to a
            <i>n</i>-Euclidean manifold (where </span><i><span
              style="font-size:10.0pt;font-family: 'Times New
              Roman',serif;mso-ansi-language:EN-US">S<sup>n-1</sup></span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB"> lies), a
            single function is achieved and a symmetry break occurs
            (Tozzi and Peters 2016,
            see above). It is known that a decrease in symmetry goes
            together with a
            decrease in entropy.  It means that the
            single mapping function on </span><i><span
              style="font-size:10.0pt;font-family:'Times New
              Roman',serif;mso-ansi-language: EN-US">S<sup>n-1 </sup></span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">displays energy
            parameters lower than the sum of two
            corresponding antipodal functions on </span><i><span
              style="font-size:10.0pt;font-family:'Times New
              Roman',serif;mso-ansi-language: EN-US">S<sup>n</sup></span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">.  Therefore,
            in
            the system </span><i><span style="font-size:
              10.0pt;font-family:'Times New
              Roman',serif;mso-ansi-language:EN-US">S<sup>n</sup></span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB"> and </span><i><span
              style="font-size:10.0pt;font-family: 'Times New
              Roman',serif;mso-ansi-language:EN-US">S<sup>n-1</sup></span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">, a decrease
            in dimensions gives rise to a decrease in energy.  We
            achieve a system in which the energetic
            changes do not depend anymore on thermodynamic parameters,
            but rather on affine
            connections, homotopies and continuous functions.   A
            preliminary example is provided by a
            recent paper, where BUT allows the </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">detection of Bayesian
            Kullback-Leibler divergence </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">during unsure
            perception </span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-GB" lang="EN-GB">(Tozzi and
            Peters, 2016, see above)</span><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">.  Therefore,
            paraphrasing what you
            stated, t</span><i><span style="font-size:
              10.0pt;font-family:'Times New
              Roman',serif;mso-fareast-font-family:'Times New
              Roman';mso-ansi-language:EN-US">he meaning specified by
              the mathematical symbol IS the
              meaning specified by a physical symbol, </span></i><span
            style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">at least in our BUT case.</span></p>
        <p style="text-align:justify"><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">Concerning the a
            priori Kantian notions (not just of space and time!),
            the most successful current neuroscientific approaches are
            framed exactly on…
            Kantian a priori!  See: </span></p>
        <p style="text-align:justify"><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US"><a
href="http://journal.frontiersin.org/article/10.3389/fnsys.2016.00079/full"
              target="_blank"><span style="color:windowtext">http://journal.frontiersin.org/article/10.3389/fnsys.2016.00079/full</span></a></span></p>
        <p style="text-align:justify"><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">The paper says: “<span
              style="background-image: initial;background-position:
              initial;background-size: initial;background-repeat:
              initial;background-attachment: initial;background-origin:
              initial;background-clip: initial;">Predictive processing
              (PP) is a paradigm in computational and cognitive
              neuroscience that has
              recently attracted significant attention across domains,
              including psychology,
              robotics, artificial intelligence and philosophy. It is
              often regarded as a
              fresh and possibly revolutionary paradigm shift, yet a
              handful of authors have
              remarked that aspects of PP seem reminiscent of the work
              of 18th century
              philosopher Immanuel Kant.<span>”</span></span> </span></p>
        <p style="text-align:justify"><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US">In such a context, a
            phrase of yours is very important: “</span><i><span
              style="font-size:10.0pt;line-height:
              107%;font-family:'Times New
              Roman',serif;mso-fareast-font-family:'Times New
              Roman';mso-ansi-language:EN-US">Perhaps this premise rests
              on the a priori Kantian
              notions of space and time rather than the systematic
              categories of Aristotelian
              causality”.  </span></i><span
            style="font-size:10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Therefore,
            your premise (e.g.,  the systematic
            categories of Aristotelian causality) is as questionable as
            a Kantian
            approach, or every other… All of us are just playing
            Wittgenstein’s linguistic
            jokes.  </span><span style="font-size:
            10.0pt;line-height:107%;font-family:'Times New
            Roman',serif;mso-ansi-language: EN-US"></span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Another
            example:<i> “Given the theory of quantum
              mechanics and the critical role that angular momenta play
              in the organization
              of brain dynamics, I would conjecture that it is
              conceivable that
              electro-dynamic equations akin to Feynman diagrams are
              needed to quantify brain
              phenomenon”.  </i></span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">This is another
            linguistic joke.  Nobody ever demonstrated
            that the brain works with quantum mechanics and that angular
            momenta play a
            role in the organization of brain dynamics!  To be honest,
            we published on BUT and quantum
            mechanics (<a
              href="http://link.springer.com/article/10.1007/s10773-016-2998-7"
              target="_blank"><span style="color:windowtext">http://link.springer.com/article/10.1007/s10773-016-2998-7</span></a>),
            therefore we were tempted to use such kind approaches for
            our brain models.  However, in this case, a quantistic brain
            it
            is not a falsifiable theory at all.  And
            despite Lakatos’ disruption of Popper’s falsifiability, I
            still think, in
            another linguistic joke, that a theory needs to be
            falsifiable… </span></p>
        <span style="font-size:10.0pt;font-family:'Times New
          Roman',serif;mso-fareast-font-family:'Times New
          Roman';mso-ansi-language:EN-US"></span><span
          style="font-size:10.0pt;font-family:'Times New
          Roman',serif;mso-fareast-font-family:'Times New
          Roman';mso-ansi-language:EN-US"> </span>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Thanks a
            lot!</span></p>
        <p style="margin-bottom:0cm;margin-bottom:.0001pt;line-height:
          normal"><span style="font-size:10.0pt;font-family:'Times New
            Roman',serif;mso-fareast-font-family:'Times New
            Roman';mso-ansi-language:EN-US">Ciao!</span></p>
        <p
style="margin-top:12.0pt;margin-right:0cm;margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span
            style="font-size: 10.0pt;line-height:107%;font-family:'Times
            New Roman',serif;mso-ansi-language: EN-US"> </span><span
            style="font-size: 14px;line-height: normal;text-align:
            start;"><font face="courier new, monospace"><b>Arturo Tozzi</b></font></span></p>
        <p
style="margin-top:12.0pt;margin-right:0cm;margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span
            style="line-height: 115%;"><font face="courier new,
              monospace">AA Professor Physics, University North Texas</font></span></p>
        <p
style="margin-top:12.0pt;margin-right:0cm;margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span
            style="font-size: 14px;line-height: normal;text-align:
            start;"><font face="courier new, monospace">Pediatrician ASL
              Na2Nord, Italy</font></span></p>
        <p
style="margin-top:12.0pt;margin-right:0cm;margin-bottom:12.0pt;margin-left:0cm;mso-add-space:auto;text-align:justify;line-height:115%;mso-layout-grid-align:none;text-autospace:none"><span
            style="font-size: 14px;line-height: normal;text-align:
            start;"><font face="courier new, monospace">Comput Intell
              Lab, University Manitoba</font></span></p>
        <font face="courier new, monospace"><a
            href="http://arturotozzi.webnode.it/" style="font-size:
            14px;color: rgb(5, 68, 126);line-height: normal;text-align:
            start;" target="_blank">http://arturotozzi.webnode.it/</a><span
            style="font-size: 14px;line-height: normal;text-align:
            start;"> <br>
          </span></font></div>
    </div>
  </body>
</html>