<HTML><HEAD></HEAD>
<BODY dir=ltr>
<DIV dir=ltr>
<DIV style="FONT-SIZE: 14pt; FONT-FAMILY: 'Calibri'; COLOR: #000000">
<P><FONT size=4 face="Times New Roman">Dear FIS colleagues,</FONT></P>
<P><FONT size=4 face="Times New Roman">I think, it is needed to put discussion
on mathematical foundation. Let me remember that:</FONT></P>
<P><FONT size=4 face="Times New Roman"></FONT> </P>
<P><FONT face="Times New Roman"><FONT size=4>The <B>Borsuk–Ulam theorem</B>
(BUT), states that every </FONT><A title="Continuous function"
style='href: "https://en.wikipedia.org/wiki/Continuous_function"'><STRONG><FONT
size=4>continuous function</FONT></STRONG></A><FONT size=4> from an </FONT><A
title=N-sphere style='href: "https://en.wikipedia.org/wiki/N-sphere"'><FONT
size=4><I>n</I>-sphere</FONT></A><FONT size=4> into </FONT><A
title="Euclidean space"
style='href: "https://en.wikipedia.org/wiki/Euclidean_space"'><STRONG><FONT
size=4>Euclidean <I>n</I>-space</FONT></STRONG></A><FONT size=4> maps some pair
of </FONT><A title="Antipodal point"
style='href: "https://en.wikipedia.org/wiki/Antipodal_point"'><FONT
size=4>antipodal points</FONT></A><FONT size=4> to the same point.
</FONT></FONT></P>
<P><FONT size=4 face="Times New Roman">Here, two points on a sphere are called
antipodal if they are in exactly opposite directions from the sphere's
center.</FONT></P>
<P><FONT size=4 face="Times New Roman">Formally: <STRONG>if</STRONG> <SPAN><SPAN
class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="DISPLAY: none"><MATH
style='xmlns: "http://www.w3.org/1998/Math/MathML"'><SEMANTICS><MROW
class=MJX-TeXAtom-ORD><MSTYLE style='displaystyle: "true"'
scriptlevel="0"><MI>f</MI> <MO>:</MO> <MSUP><MI><EM>S</MI><SUP> <MROW
class=MJX-TeXAtom-ORD><MI>n</SUP></MI> </MROW></MSUP><MO
style='stretchy: "false"'>→</MO> <MSUP><MROW class=MJX-TeXAtom-ORD><MI
style='mathvariant: "double-struck"'>R</EM></MI> </MROW><MROW
class=MJX-TeXAtom-ORD><MI><SUP>n</SUP></MI> </MROW></MSUP></MSTYLE></MROW><ANNOTATION
style='encoding: "application/x-tex"'></SPAN></SPAN> <STRONG>is</STRONG>
<STRONG>continuous</STRONG> then there exists an <SPAN><SPAN
class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="DISPLAY: none"><MATH
style='xmlns: "http://www.w3.org/1998/Math/MathML"'><SEMANTICS><MROW
class=MJX-TeXAtom-ORD><MSTYLE style='displaystyle: "true"'
scriptlevel="0"><MI>x</MI> <MO>∈</MO> <MSUP><MI>S</MI> <MROW
class=MJX-TeXAtom-ORD><MI>n</MI> </MROW></MSUP></MSTYLE></MROW><ANNOTATION
style='encoding: "application/x-tex"'></SPAN></SPAN> such that: <SPAN><SPAN
class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="DISPLAY: none"><MATH
style='xmlns: "http://www.w3.org/1998/Math/MathML"'><SEMANTICS><MROW
class=MJX-TeXAtom-ORD><MSTYLE style='displaystyle: "true"'
scriptlevel="0"><MI>f</MI> <MO style='stretchy: "false"'>(</MO> <MO>−</MO>
<MI>x</MI> <MO style='stretchy: "false"'>)</MO> <MO>=</MO> <MI>f</MI> <MO
style='stretchy: "false"'>(</MO> <MI>x</MI> <MO
style='stretchy: "false"'>)</MO></MSTYLE></MROW><ANNOTATION
style='encoding: "application/x-tex"'></ANNOTATION></SEMANTICS></MATH></SPAN></SPAN>.</FONT></P>
<P><FONT size=4 face="Times New Roman">[ </FONT><A
title=https://en.wikipedia.org/wiki/Borsuk%E2%80%93Ulam_theorem
href="https://en.wikipedia.org/wiki/Borsuk%E2%80%93Ulam_theorem"><FONT size=4
face="Times New Roman">https://en.wikipedia.org/wiki/Borsuk%E2%80%93Ulam_theorem</FONT></A><FONT
size=4 face="Times New Roman"> ] </FONT></P>
<P><FONT size=4 face="Times New Roman"></FONT> </P>
<P><FONT face="Times New Roman"><FONT size=4>Who may proof that consciousness is
a </FONT><A title="Continuous function"
style='href: "https://en.wikipedia.org/wiki/Continuous_function"'><FONT
style='face: "Times' size=4 New roman?><STRONG>continuous
function</STRONG></FONT></A><FONT style='face: "Times' size=4 New roman?> from
reflected reality ???</FONT></FONT></P>
<P><FONT face="Times New Roman"><FONT size=4>Who may proof that consciousness is
an </FONT><A title="Euclidean space"
style='href: "https://en.wikipedia.org/wiki/Euclidean_space"'><FONT
style='face: "Times' size=4 New roman?><STRONG>Euclidean
<I>n</I>-space</STRONG></FONT></A><FONT style='face: "Times' size=4 New roman?>
???</FONT></FONT></P>
<P><FONT style='face: "Times' size=4 face="Times New Roman" New roman?>After
proving these statements we may think further.</FONT></P>
<P><FONT size=4 face="Times New Roman"></FONT> </P>
<P><FONT size=4 face="Times New Roman">Yes, discussion is interesting but, I am
afraid, it is not so scientific.</FONT></P>
<P><FONT size=4 face="Times New Roman"></FONT> </P>
<P><FONT size=4 face="Times New Roman">Friendly regards</FONT></P>
<P><FONT size=4 face="Times New Roman">Krassimir</FONT></P>
<P><FONT size=4 face="Times New Roman"></FONT> </P>
<P><FONT size=4 face="Times New Roman"></FONT> </P>
<P><FONT size=4 face="Times New Roman"></FONT> </P>
<P><FONT size=4 face="Times New Roman"></FONT></P></DIV></DIV></BODY></HTML>