<div dir="ltr"><div class="gmail_extra"><div>RE Bruno Marchal: <span style="font-size:12.8px">Gödel's theorem implies that machines which are looking at themselves (in a precise technical sense) develop a series of distinct phenomenologies (arguably corresponding to justifiable, knowable, observable, sensible). </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">ME: I find this a fascinating observation in that you are making a phenomenological association with a self-referential kind of machine. </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">However, from the perspective of my proposal, surely your classes of machine are not operating from a critical instability where the information states themselves have the self-referential property embedded within them. Or are they? Or some of them? </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">The question then arises whether such a machine could exhibit a capacity to "reason about" a problem, which it had been posed, and so tackle the problem as one of a member of.a class of </span><span style="font-size:12.8px">similar</span><span style="font-size:12.8px"> problems? </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">It is certainly true in mathematics that the human mind possesses such abilities to an outstanding extent: not only the ability to comprehend a problem, and secondly the ability to see the problem as a member of (in the context of) a class of similar problems, but also the ability to <b>generalize </b>a problem, and so </span><b style="font-size:12.8px">create</b><span style="font-size:12.8px"> </span><span style="font-size:12.8px">a class of similar problems </span><span style="font-size:12.8px">as a context within which more general reasoning processes can be applied to solve the problem in question. </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">An example of such an approach is given by </span><span style="font-size:12.8px">the Taniyama-Shimura conjecture,</span><span style="font-size:12.8px"> "Each Elliptical Function is equivalent to a particular Modular Form", </span><span style="font-size:12.8px">one step of the path </span><span style="font-size:12.8px">followed by </span><span style="font-size:12.8px">Andrew Wiles to prove Fermat's last theorem between 1986 and 1994. </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">Does this not also illustrate aspects of the discussion of Godel's theorem, where Maxine has extensively quoted semantic objections to Godel's statement on the grounds (as I understand her) that it could not be construed as a direct product of phenomenological experience. </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">May I say that I would not regard my paraphrase of Maxine's reason as a valid objection because I do not expect statements in mathematics to conform to requirements for statements to be considered </span><span style="font-size:12.8px">phenomenological. The sentential calculus is constructed within the category of sets, and Frege and Russell and Whitehead were operating within that framework, as was Godel. </span></div><div><span style="font-size:12.8px"><br></span></div><div><span style="font-size:12.8px">I personally</span><span style="font-size:12.8px"> do not regard the category of sets as a valid framework for phenomenology. </span></div><div><span style="font-size:12.8px">My construction of a new information theory appropriate to describe phenomenological experience specifically denies it. The sentential calculus of Frege & co has no bite - it is superficial and not the enamel required to start up the mind's intellectual digestion and absorption processes. </span></div><div><span style="font-size:12.8px"><br></span></div><div><br></div>-- <br><div><div dir="ltr"><div><span style="font-family:arial,sans-serif;font-size:13px;border-collapse:collapse">Alex Hankey M.A. (Cantab.) PhD</span><span style="font-family:arial,sans-serif;font-size:13px;border-collapse:collapse"> (M.I.T.)<br>Distinguished Professor of Yoga and Physical Science,<br>
SVYASA, Eknath Bhavan, 19 Gavipuram Circle<br>
Bangalore 560019, Karnataka, India <br>Mobile (Intn'l): <a href="tel:%2B44%207710%20534195" value="+447710534195" target="_blank">+44 7710 534195</a> </span><span style="font-family:arial,sans-serif;font-size:13px;border-collapse:collapse"></span><div><span style="font-family:arial,sans-serif;font-size:13px;border-collapse:collapse">Mobile (India) +91 900 800 8789</span></div><div><span style="font-family:arial,sans-serif;font-size:13px;border-collapse:collapse"><div style="font-size:12.8px">____________________________________________________________</div><div style="font-size:12.8px"><span style="font-family:georgia,serif"><br></span></div><div style="font-size:12.8px"><span style="font-family:georgia,serif"><a href="http://www.sciencedirect.com/science/journal/00796107/119/3" style="color:rgb(17,85,204)" target="_blank">2015 JPBMB Special Issue on Integral Biomathics: Life Sciences, Mathematics and Phenomenological Philosophy</a></span></div></span></div></div></div></div>
</div></div>