<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><p class="" style="text-indent: -18pt;"><span style="text-indent: -18pt;" class="">Dear Folks,</span></p><p class="" style="text-indent: -18pt;"><span style="text-indent: -18pt;" class="">I am sending this again, just the quantum part, with typos removed.</span></p><div class="">Best,</div><div class="">Lou</div><div class=""><br class=""></div><div class=""><div class="">Quantum Theory in a Nutshell</div><div class=""><br class=""></div><div class="">1. A state of a quantum system is a vector |psi> of unit length in a complex vector space H. </div><div class="">H is a Hilbert space, but it can be finite dimensional. </div><div class="">Dual vectors are denoted by <phi | so that <phi |psi> is a complex number and <psi |psi> is a positive real number.</div><div class=""><br class=""></div><div class="">2. A quantum process is a unitary transformation U: H ——> H. </div><div class="">Unitary means that the U* = U^{-1} where U* denotes the conjugate transpose of U.</div><div class="">Unitarity preserves the length of vectors.</div><div class=""><br class=""></div><div class="">3. An observation projects the state to a subspace. The simplest and most useful form of this is to </div><div class="">assume that H has an orthonormal basis { |e_1> ,|e_2>,…} that consists in all possible results of observations.</div><div class=""><br class=""></div><div class="">Then observing |psi> results in |e_n> for some n with probability |<e_n | psi>|^2.</div><div class="">Note that the Sum_{n} |<e_n | psi>|^2 = 1 since |psi> is a vector of unit length.</div><div class=""><br class=""></div><div class="">This description shows that quantum theory is a dynamic sort of probability theory.</div><div class="">The state vector |psi> is a superposition of all the possibilities for observation, with complex number coefficients.</div><div class="">Via the absolute squares of these coefficients, |psi> can be regarded as a probability distribution for the outcomes that correspond to each basis element. </div><div class="">Since the coefficients are complex numbers and the quantum processes preserve the total probability, </div><div class="">one has room for complexity of interaction, phase, superposition, cancellation and so on.</div></div><div class=""><br class=""></div><div class=""><br class=""></div><p class="" style="text-indent: -18pt;"><br class=""></p><p class="" style="text-indent: -18pt;"><br class=""></p><p class="" style="text-indent: -18pt;"><br class=""></p><p class="" style="text-indent: -18pt;"><br class=""></p><br class=""></body></html>