<div dir="ltr"><p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px"><font class="Apple-style-span">Terry -- Replying</font></span></p><p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px"><br></span></p><p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">T: Stan: Abiotic dissipative structures will degrade their gradients as fast as possible given the bearing constraints. They are unconditional maximizers. Life that has survived has been able to apply conditions upon its entropy production, but that does not mean that it has enacted energy conservation or energy efficiency policies. Its mode is still maximizing, but within limits.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323;min-height:12.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">Your phrases "given the bearing constraints" and "within limits" are the critical issues to be focused on in my opinion [as I noted in my response to Guy].</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: Yes.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">T: But I do indeed argue that living processes can and do enact entropy rate regulating mechanisms. This is of course an empirical question, and</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: Do you know the multiple papers by Adrian Bejan? He has shown that in all systems (he has tackled LARGE numbers of them, including the living), the system organizes so as to maximize access to the energy gradient it is using. I think that this is exactly what MEPP would predict.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">T: I have seen studies suggesting both results. My point is only that autogenesis (which I use as a proxy for the simplest life-like dynamic)</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: Do you know these papers on autogenesis? They were dissatisfied with autopoiesis because it did not admit evolutionary change.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Helvetica"><span style="letter-spacing:0.0px">Csányi, V. and G. Kampis (1989). Autogenesis: the evolution of replicative systems. </span><span style="text-decoration:underline;letter-spacing:0.0px">Journal of Theoretical Biology</span><span style="letter-spacing:0.0px"> 114: 303-321. </span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Helvetica;min-height:16.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Helvetica"><span style="letter-spacing:0.0px">Kampis, G., 1991. </span><span style="text-decoration:underline;letter-spacing:0.0px">Self-modifying Systems in Biology and Cognitive Science: A New Framework</span><span style="letter-spacing:0.0px"> </span><span style="text-decoration:underline;letter-spacing:0.0px">for Dynamics, Information and Evolution</span><span style="letter-spacing:0.0px">. London: Pergamon Press.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">T: is a dissipative system that regulates the boundary constraints on its rate of dissipation, and that this non-linearity is a critical game-changer. </span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: Regulates downward from physical maxima, but does not go below the fastest non-damaging rates, therefore is ‘maximizing given constraints’, </span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">T: In particular, for this discussion, I argue that this constraint-ratcheting effect—where a distinctive dynamical configuration can change the boundary constraints on its own constraint dissipation tendency—</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: This is not clear. Constraints are usually not thought of as dissipatable. Perhaps an example?</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">T: is what makes reference and significance possible. The resulting higher order synergy constraint is neither a physical nor chemical constraint, but a formal constraint.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: By “formal” I Take it you mean organizational or structural.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px">T: Because of this it is thereby</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: ‘Could thereby be’ ?</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px"> substrate transferrable so that reference and significance are maintainable despite complete replacement of physical substrates, i.e. via reproduction.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: Would an example be the use of yolk in embryos?</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:11.0px Arial;color:#232323"><span style="letter-spacing:0.0px"> Without this property biological evolution is not possible.</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">S: Is the property in question the “formal” organization?</span></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323;min-height:15.0px"><span style="letter-spacing:0.0px"></span><br></p>
<p style="margin:0.0px 0.0px 0.0px 0.0px;font:13.0px Arial;color:#232323"><span style="letter-spacing:0.0px">STAN</span></p></div><div class="gmail_extra"><br><div class="gmail_quote">On Sat, Jan 10, 2015 at 3:42 AM, Terrence W. DEACON <span dir="ltr"><<a href="mailto:deacon@berkeley.edu" target="_blank">deacon@berkeley.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div class="gmail_extra"><span style="font-size:13px">Hi Stan,</span><div style="font-size:13px"><br></div><div style="font-size:13px"><span style="color:rgb(35,35,35);font-family:Arial">Stan: Abiotic dissipative structures will degrade their gradients as fast as possible given the bearing constraints. They are unconditional maximizers. Life that has survived has been able to apply conditions upon its entropy production, but that does not mean that it has enacted energy conservation or energy efficiency policies. Its mode is still maximizing, but within limits.</span><br></div><span style="font-size:13px"><div><span style="color:rgb(35,35,35);font-family:Arial"><br></span></div></span><div style="font-size:13px"><span style="color:rgb(35,35,35);font-family:Arial">Terry: Your phrases "</span><span style="color:rgb(35,35,35);font-family:Arial">given the bearing constraints" and</span><span style="color:rgb(35,35,35);font-family:Arial"> "within limits" are the critical issues to be focused on in my opinion [as I noted in my response to Guy]. But I do indeed argue that living processes can and do enact </span><font color="#232323" face="Arial">entropy rate regulating mechanisms. This is of course an empirical question, and I have seen studies suggesting both results. My point is only that autogenesis (which I use as a proxy for the simplest life-like dynamic) is a dissipative system that regulates the boundary constraints on its rate of dissipation, and that this non-linearity is a critical game-changer. </font></div><div style="font-size:13px"><font color="#232323" face="Arial"><br></font></div><div style="font-size:13px"><font color="#232323" face="Arial">In particular, for this discussion, I argue that this constraint-ratcheting effect—where a distinctive dynamical configuration can change the boundary constraints on its own constraint dissipation tendency—is what makes reference and significance possible. The resulting higher order synergy constraint is neither a physical nor chemical constraint, but a formal constraint. Because of this it is thereby substrate transferrable so that reference and significance are maintainable despite complete replacement of physical substrates, i.e. via reproduction. Without this property biological evolution is not possible.</font></div><div style="font-size:13px"><font color="#232323" face="Arial"><br></font></div><div style="font-size:13px"><font color="#232323" face="Arial">— Terry</font></div>
</div></div>
<br>_______________________________________________<br>
Fis mailing list<br>
<a href="mailto:Fis@listas.unizar.es">Fis@listas.unizar.es</a><br>
<a href="http://listas.unizar.es/cgi-bin/mailman/listinfo/fis" target="_blank">http://listas.unizar.es/cgi-bin/mailman/listinfo/fis</a><br>
<br></blockquote></div><br></div>